Грибки крепеж: ДЮБЕЛЬ ГРИБ для крепления теплоизоляции, пенопласта. Тарельчатый дюбель. Дюбель фасадный. Цена. Купить. ООО ГринТэкс

Грибки крепеж: ДЮБЕЛЬ ГРИБ для крепления теплоизоляции, пенопласта. Тарельчатый дюбель. Дюбель фасадный. Цена. Купить. ООО ГринТэкс

Содержание

Крепеж для утеплителя

В этом разделе представлены метизы для крепления плит из теплоизолирующего материала. Утеплители отличаются низкой плотностью, пористой структурой, высокой хрупкостью. Для их фиксации необходимо применять крепежи специальной конструкции.

Дюбели для листов утеплителя имеют широкую головку тарельчатой формы, что обеспечивает целостность теплоизолятора. Удлиненный стержень с продольными разрезами равномерно распределяет нагрузку и надежно закрепляет утеплитель.

Метизные изделия такого типа производят из различных видов пластика и других полимеров. Этот материал не ухудшает теплоизолирующих характеристик утеплителя и не вызывает образование так называемых “мостиков холода”.

Для фиксации утеплителя к основанию материалов низкой плотности и веса применяют дюбели с пластмассовыми гвоздями. Для крепления листов теплоизоляции к бетонным или кирпичным стенам целесообразно использовать изделия, укомплектованные стальными расклинивающими гвоздями.

В ассортименте нашей компании представлены нейлоновые дюбель-грибы для теплоизоляции, пластмассовые тарельчатые дюбели и металлические дюбели для утеплителя, которые соответствуют требованиям пожарной безопасности и класса огнестойкости B1. Металлические дюбели для утеплителя представлены рядом марок и самые часто запрашиваемые из них: Дюбель металлический Termoclip, Дюбель металлический для термоизоляции fischer, дюбель металлический для утеплителя Mungo.

Так же мы рады предложить из нашего ассортимента дюбели для утеплителя с термоголовкой. Данный дюбель менее подвержен тепло проводимости за счет наличия термоголовки на гвозде. В качества экземпляров, которые рекомендуется использовать для полной теплоизоляции, представляем дюбели для утеплителя марки fischer, технологии которых позволяют закрепить утеплитель и скрыть монтажные точки этим же утеплителем.

Обращайтесь! Мы работаем для Вас!

Телефон: +7 (495) 230-10-82, e-mail: [email protected]

схема, размеры, расход на м2, цены

Тарельчатые дюбеля относится к специализированной разновидности, используемой при креплении утеплителя плитного типа – пенополистирола или базальтовой ваты к бетонному, каменному, кирпичному, пористому или деревянному основанию. Отличительными особенностями является наличие удлиненной распорной части и широкой перфорированной или сплошной шляпки, такое исполнение позволяет надежно удерживать изоляционный материал и его отделку вне зависимости от наклона рабочей поверхности.

Оглавление:

  1. Классификация грибков
  2. Критерии выбора
  3. Технология монтажа
  4. Стоимость

Виды и характеристики крепежа

Данная группа разделяется на дюбеля с расширяемой гильзой и телескопические, применяемые совместно с саморезами. Первый тип является самым распространенным, удлиненная зона расклинивания и внутренний стержень в данном случае проходят насквозь плиты, штукатурку (при наличии) и углубляется в стены или потолок на 4,5 см и более. Край распорного стержня у них слегка вдавливается в широкую тарельчатую шляпку, прижимая тем самым прослойку теплоизоляции к рабочей плоскости. Яркий пример – изделия Технониколь – полимерные трубчатые стержни с фланцем с диаметром в 50 мм надежно фиксируются глубоко заходящими саморезами из прочного металла.

По материалу изготовления и конструкции гвоздя выделяют полипропиленовые грибки для крепежа, металлические и с термоголовкой. Первая группа включает в себя дюбеля с широкой перфорированной шляпкой, распираемые пластиковым стержнем, с выдерживаемой несущей нагрузкой не более 380 Н. Они используются для легких типов утеплителя, эксплуатируемого при температуре от -40 °C до +80 к вертикальным поверхностям и фасадам с прочной основой, к их главным преимуществам относят низкую теплопроводность (не более 0,004 Вт/м·°C), хорошую адгезию с бетоном, кирпичом и пеноблоками, коррозийную устойчивость и доступную стоимость. Но для высокоплотных видов или при планировании защиты прослойки изоляции тяжелыми стройматериалами они не подходят.

Грибки, распираемые ударопрочным металлическим гвоздем, при средних размерах 10×100 мм и шляпке со стандартным диаметром в 60 выдерживают нагрузку до 750 Н. Они выбираются при необходимости монтажа к потолку или отделке фасадов тяжелыми плитами каменной ваты. В целом они уступают пластиковым разновидностям в стойкости к коррозии, но при использовании вариантов с хорошим качеством покрытия металла служат достаточно долго. Но из-за отличий в коэффициенте термопроводности с самим утеплителем они образуют мостики холода, что снижает эффективность проведения наружной изоляции, при увеличении числа крепежей этот недостаток проявляется сильнее.

Оптимальные характеристики в плане устойчивости к коррозии, выдерживаемым нагрузкам и исключении теплопотерь наблюдаются у дюбелей с термоголовкой. Стальной стержень в данном случае закрывается пластиком, изделия не подвержены влиянию внешних воздействий. Область применения практически универсальна и включает монтаж любых термоизоляторов к основаниям из обычного и легкого бетона, кирпича, камня и дерева, наклон рабочей поверхности не имеет значения. Единственным недостатком является высокая цена.

Что следует учесть при выборе?

Расход элементов крепления на 1 м2 зависит от типа конструкции, ее высоты и месторасположения. На обычных участках фасада достаточно 4-5 штук, на углах – 6, при утеплении второго этажа зданий – 7, домов выше 20 м – 9. Помимо высоты учитывается толщина и плотность теплоизоляции, ветровые нагрузки и вес будущей отделки. Допустимый максимум составляет 10 дюбелей на 1 м2, нарушать его не рекомендуется из-за риска образования мостиков холода и экономической нецелесообразности.

При подборе варианта для пенополистирола предпочтение отдается разновидностям с шершавой изнутри шляпкой. Обращается внимание на качество антикоррозийной обработки, при риске проникновения осадков внутрь или при изоляции высотных зданий покупаются самые дорогие типы с металлическим распорным элементом и пластиковой термоголовкой. К учитываемым характеристикам помимо выдерживаемой нагрузки, веса и размеров относят температурный диапазон эксплуатации, в северных широтах не советуется использовать изделия для наружного утеплителя с гвоздем из пластика из-за риска их растрескивания. Схема расположения и общее количество продумывается заранее, после выбора термоизоляции и расчета толщины прослойки.

Нюансы монтажа теплоизоляции

Грибки для крепления плит фиксируются после подготовки основания и приклеивания к нему самого материала. Работы ведутся в следующей последовательности:

  • На поверхности пенопласта или минваты отмечаются точки расположения будущих крепежей с рекомендуемым интервалом не более 80 см по горизонтали, 30- по вертикали. При теплоизоляции оснований со сложной формой или использовании отдельных кусков стоит составить схему размещения дюбелей заранее.
  • В утеплителе и стенах подготавливается посадочное отверстие диаметром не более 10 мм.
  • Гриб размещается вручную вплоть до полного прижатия шляпки к изоляции.
  • Распорный элемент устанавливается внутрь до достижения максимального упора.
  • Закрытие шляпки пластиком (при разновидностях с термоголовкой).

По окончании монтажа всех дюбелей проводится заделка стыков, размещение пароизоляции, армирующей сетки и внешняя отделка. Работы выполняются после просыхания клеевого состава, на это уходит 2-3 дня. При необходимости крепления к дереву или металлу специализированные варианты используются вместе с дожимной манжетой из пластика, процесс установки в этом случае практически неотличим.

К важным нюансам технологии относят подбор правильной длины изделий и расчет их нужного расхода на 1 м2. Конструкция считается надежной при заглублении распорной гильзы в основание как минимум на 4,5 см, при работе с пористыми или слабыми материалами эту норму советуют увеличить до 10 см.

Осыпающая штукатурка или аналогичные отслаиваемые виды облицовки отрицательно влияют на качество крепежа, при проведении утепления пропускать подготовку поверхностей недопустимо. Рекомендуемая величина запаса составляет 1-2 см, ошибиться лучше в большую сторону.

Расценки

Бренд Основа D шай-бы, мм Р-ры крепежа, мм Мате-риалы корпуса Гвоздь Цена, рубли
Бюбель-гриб для утеплителя Tech-Krep Бетон, камень, кирпич, газосиликат 60 10×100 Полипропилен 2,5
То же, с термоголовкой 16×100 Полипро-пилен Сталь с покрытием из белого цинка 9
С металлическим гвоздем 12×100 5,6
Koelner с металлическим гвоздем и термоголовкой 10×200 Сталь с покрытием из желтого цинка 14
Дожимная манжета Рондоль Дерево 50 1,5
Телескопический крепеж Технониколь с саморезом Несущее основание кровли: профлист, бетон, дерево 10×200 Высокоп-рочный полимер Используется с металлическими саморезами Технониколь 8,2

Стоимость дюбелей для теплоизоляции зависит от продвинутости бренда, качества материала изготовления и размеров: длины гильзы и распорной части и диаметра шайбы. Изделия с металлическим гвоздем стоят в два раза больше полипропиленовых, крепления с термоголовками обходятся еще на порядок дороже. Экономить не рекомендуется, это сказывается на надежности фиксации, единственным способом снижения затрат является приобретение оптом.

Дюбель для пеноплекса, как крепится

Самым распространенным крепежным элементом для пеноплекса являются грибки. Такими элементами фиксируют утеплительный материал к стене. Перед приобретением крепежей, необходимо рассчитать их количество, и учесть характеристику каждого вида.

Какие функции выполняет дюбель?

Пеноплекс имеет небольшой вес, поэтому многие думают, что его достаточно закрепить на клей. Но в полном сборе, система теплоизоляционных материалов, вместе с клеем, и внешней отделкой, будет весить немало, поэтому стоит предусмотреть дополнительное крепление пеноплекса при помощи дюбелей.
Декоративная отделка, и клей дает большую нагрузку на сам утеплительный материал, поэтому по истечении какого-то времени, он может отслоиться от поверхности стен или полностью упасть, это происходит при отсутствии надежного крепления. Чтобы избежать таких проблем, пеноплекс закрепляют дюбелями, которые имеют распорную систему.

Крепежные элементы могут быть различных видов, от этого зависит качество работы распорной системы. Крепежные дюбеля фиксируют на различные типы поверхностей, от этого зависит их удерживающая способность. Например, пористые пустотелые материалы приводят к сложности крепления дюбеля. То есть перед приобретением, необходимо рассчитать удерживающую способность дюбеля, то есть, какое количество материала понадобиться для одного метра квадратного, этот показатель зависит от материала стеновой конструкции.

Разновидности дюбелей для пеноплекса

Для закрепления утеплителя к стене используют три вида дюбеля, они могут выпускаться с гвоздем из полимеров или металла, существует вид крепежа с термоголовкой. Для дюбелей пластикового вида используют нейлон или полипропилен, основным преимуществом материала является низкая стоимость, но его прочность немного ниже металлических элементов.

  1. Грибки из пластика для фиксации утеплителя, устанавливаются на кирпичных или бетонных поверхностях. Такие элементы не применяют для тяжелого вида утеплителей, а также они не подходят при стенах из вспененного бетона. Материал имеет низкую доступную стоимость.
  2. Дюбеля из металла отличаются от полимерного материала прочностью. При их использовании учитывают, значительную теплопроводность металлического материала, это влияет на качественную работу теплоизоляции. Грибки металлического вида создают мостики холода, которые образуют участки с высоким показателем теплопроводности. Дюбеля с гвоздем из металла может покрыться коррозией, при попадании на них влажности. Такие элементы дороже, чем пластиковые крепежи.
  3. Заменой металлическим крепежам может стать дюбель с термоголовкой, стержень изготавливается из стали, а шляпку покрывают таким металлом, который имеет невысокую теплопроводность. Покрытием является полиамид ударопрочного вида, его теплопроводность почти равна этому показателю утеплительного материала. Также гвоздь из металла закрыт чехлом, поэтому дюбеля не покрываются коррозией. Но необходимо учитывать, что стоимость такого материала отличается от пластиковых, и металлических дюбелей.

Как определить длину и количество необходимого крепежного элемента

При закреплении пеноплекса к стене, вначале рассчитывают длину стержня грибка. Для расчета к толщине теплоизоляционного материала прибавляют толщину клеевого состава, который наносят для фиксации утеплителя, длину углубления дюбеля в стену, и допустимое отклонение стен от вертикального положения.
При использовании грибков для надежной фиксации утеплителя, необходимо рассчитать количество материала на один метр квадратный. Во время подсчета руководствуются строительными нормами. Для закрепления пеноплекса на поверхностях стены используют 4 грибка, которые располагают в угловой части материала. В некоторых случаях добавляют один элемент в центральной части теплоизоляционного листа. На углах помещения для закрепления утеплителя на один квадратный метр используют около 6 крепежных элементов.

Если высота фасада от 8 до 20 метров, тогда на один квадратный метр потребуется 7 штук дюбелей. При многоэтажном здании, на квадратный метр уходит 9 штук грибков.

Особенности закрепления теплоизоляции к стене при помощи дюбелей

Технология закрепления таких материалов, как пеноплекс, пенопласт, и пенополистирол, является одинаковой. Вначале подготавливают теплоизоляционный материал, затем листы закрепляются на стены при помощи клеевого состава. Когда раствор подсохнет, приступают к фиксации пеносплекса дюбелями, перед этим все швы должны быть обработаны, чтобы через них не создавались мостики холода. После этого теплоизоляционный материал отделывается финишным покрытием, это могут быть различные панели или штукатурка.

Перед тем как закреплять утеплительный материал, с поверхности стен убирают старую штукатурку, все дефекты в виде перепадов устраняют при помощи раствора. После этого поверхность обезжиривают, это поможет создать качественную адгезию клеевого состава со стеной. 

Клеевая смесь для закрепления утеплительного материала не должна иметь в своем составе толуол, ацетон или другие растворители органического вида.
Чтобы листы теплоизоляции не сдвигались вниз от естественного веса, перед укладкой первого ряда, монтирую профиль из металла. После высыхания раствора, выполняют крепление при помощи грибков. Для этого сверлом, диаметр которого равен окружности стержня дюбеля, проделывают специальные отверстия. Длина углубления делается больше, чем длина самого дюбеля на один сантиметр, благодаря этому, фиксация крепежных элементов будет надежной.

Технология фиксации утеплителя при помощи дюбелей

Пеноплекс активно используют для утепления фундамента, так как этот материал не разрушается под воздействием влажности, а также не изменяется при изменении температуры. Участок фундамента, расположенный над землей, покрывают утеплителем, и фиксируют при помощи дюбелей. Чтобы обеспечить зданию качественную защиту от низкой температуры, пеноплекс можно укладывать под бетонную стяжку отмостки.

Дюбеля для фиксации листов пеноплекса должны иметь длину на 50 сантиметров больше толщины самого материала, рассчитать количество элементов можно, учитывая, что на один метр квадратный потребуется 6 штук. Лучше всего использовать дюбеля с термоголовкой, и стержнем из металла.
Для закрепления пеноплекса дюбелями, выполняют отверстия одно в центре листа, и четыре – в каждом углу. Таким образом, лист утеплителя будут удерживать сразу несколько крепежных элементов.

В отверстия помещаются дюбеля, затем в них забивают распорные элементы в виде гвоздя. Если работа выполняется с кирпичной поверхностью, то глубина погружения должна быть минимум 50 миллиметров.

Дополнительные советы

Грибки располагают на стыках листов, это поможет избежать наличия дополнительных отверстий в утеплителе. То есть, при такой работе сохраняются теплоизоляционные свойства, не образуются мостики холода.

При установке дюбеля в металлическое покрытие, к стержню грибка закрепляют саморез. При помощи саморезного элемента крепеж погружается в теплоизоляционный материал так, чтобы он достал основной поверхности. Затем шурупвертом дюбель вкручивают в металлическую поверхность, глубину отверстия для самореза делают около 15 миллиметров. Когда укладка теплоизоляционного материала будет завершена, а листы качественно закреплены, се соединения закрывают алюминиевым скотчем.

При правильном выборе, и подсчете количества дюбелей, пеноплекс будет надежно зафиксирован. Перед тем как приступить к фиксации листов дюбелями, необходимо рассчитать количество, и нужную длину крепежных элементов.

Грибки для крепления утеплителя: правильный крепеж теплоизолятора

Вне зависимости от вида строения, некоторые дома нуждаются в утеплении. Для этих целей используют теплоизоляторы из разных материалов.

Для прикрепления материала к стене, а также достижения максимального прижатия желательно использовать грибки для крепления утеплителя.

Основное назначение

Утеплители бывают разного типа: мягкие в рулонах, жесткие в плитах и жидкие. Для жидких грибков для крепления утеплителя не применяются. Для мягких утеплителей такие зонтики необходимы, особенно для вертикального утепления, потому как мягкий тип теплоизолятора может сползать вниз. А зонтиками утеплитель крепится по всей площади утепления, что позволяет материалу держаться там, где это необходимо.

Жёсткие виды утепления обычно крепятся, наклей, но зонтики применяют, чтобы осуществить более надежное крепление этого материала.
Также, зонтики необходимы для более плотного пролегания теплоизоляции к стенам. За счет этого теплоизоляционный слой только лучше сохраняет тепло. Кроме того, дюбель-гриб — это единственный вид крепления, который может связывать теплоизолятор со стеной.

К минусам такого крепления можно отнести появление мостика холода и то они есть в дюбелях с металлическим гвоздем. В результате того, что гвоздь дюбеля будет проникать в стены строения в этих местах возможно промерзание, при действии низких температур воздуха.

Виды

Грибок для крепления утеплителя производится в нескольких видах. Каждый имеет свои отличительные черты и характеристики:

  1. Пластиковые дюбеля отличаются невысокой характеристикой по прочности. Но они совершенно невосприимчивы к низким температурам, вследствие чего не образуется мостик холода.
  2. Металлический дюбель намного прочнее пластикового, но при этом образует мостик холода. К минусам металла можно отнести тот факт, что он образовывает ржавчину. А если дом оштукатурен декоративной штукатуркой, то эти пятна могут проступать наружу, портя внешний вид дома.
  3. Дюбель с термоголовкой сконструирован таким образом, чтобы исключить появление мостиков холода, а также избавиться от появления пятен на оштукатуренной поверхности. Гвоздь дюбеля выполнен из металла, а шляпка изготовлена из материала с низкой теплопроводностью.

Грибок для утеплителя подбирают в зависимости от вида утепления и материала конструкции строения. Крепеж на пластиковые зонтики лучше осуществлять при использовании пенопласта.

Этот материал не имеет большого веса, а значит, от гвоздя не потребуется большой прочности. Металлические зонтики и гвозди с термошляпкой лучше применять для минеральной ваты при монтаже на кирпичные и газобетонные дома.

Размеры грибка

Фиксатор имеет разнообразные размеры, поскольку применяется для широкого вида крепления. Чтобы рассчитать какой размер необходим для монтажа теплоизолятора к дому нужно знать определенные характеристики:

  1. Толщину строительного материала, применяемого для утепления.
  2. Глубину заглубления в стену. Как правило, глубина должна составлять минимум 4,5 см.

Если стена ранее отделывалась и после этого необходимо сделать утепление, не произведя демонтаж предыдущей отделки, то этот параметр также следует учитывать.

Все значения нужно сложить между собой, получившиеся цифры будут соответствовать размеру дюбеля. Если получившаяся цифра не соответствует ни одному размеру, то лучше приобрети дюбель большего размера.

Монтаж материала с помощью зонтика

Монтаж утеплителя на зонтик производится практически так же, как и без них. Для начала основание нужно подготовить, а затем утеплитель сажается, наклей. Клеевому слою нужно дать просохнуть, а после плиты или отрезы рулона нужно закрепить на грибки.

Для крепления зонтиков необходимо сверлить отверстия, а после этого производить монтаж. Диаметр сверла должен быть равен диаметру гвоздя зонтика, длина отверстия больше на 1 см. Это делается для того, чтобы монтажная пыль не мешала сцеплению грибка со стеной.

Чтобы уменьшить количество отверстий на утеплителе и стене желательно производить монтаж зонтиков на стыках теплоизолятора. К угловым элементам это не относится.

После монтажа зонтиков на утеплитель нелишним моментом будет прохождение всех стыков скотчем с алюминиевой поверхностью. Это действие закроет все отверстия и снизит мостик холода, если при монтаже использовались металлические дюбеля. После этого поверхность фасада можно закрывать пароветрозащитной мембраной.

Грибки необходимо использовать при утеплении стен под штукатурку, так как этот материал отделки очень тяжелый. Одного клея недостаточно и грибки, дающие дополнительное сцепление со стеной, необходимы.

Расход дюбелей на м2 утепления фасада

Тарельчатые дюбеля относится к специализированной разновидности, используемой при креплении утеплителя плитного типа – пенополистирола или базальтовой ваты к бетонному, каменному, кирпичному, пористому или деревянному основанию. Отличительными особенностями является наличие удлиненной распорной части и широкой перфорированной или сплошной шляпки, такое исполнение позволяет надежно удерживать изоляционный материал и его отделку вне зависимости от наклона рабочей поверхности.

Оглавление:

  1. Классификация грибков
  2. Критерии выбора
  3. Технология монтажа
  4. Стоимость

Виды и характеристики крепежа

Данная группа разделяется на дюбеля с расширяемой гильзой и телескопические, применяемые совместно с саморезами. Первый тип является самым распространенным, удлиненная зона расклинивания и внутренний стержень в данном случае проходят насквозь плиты, штукатурку (при наличии) и углубляется в стены или потолок на 4,5 см и более. Край распорного стержня у них слегка вдавливается в широкую тарельчатую шляпку, прижимая тем самым прослойку теплоизоляции к рабочей плоскости. Яркий пример – изделия Технониколь – полимерные трубчатые стержни с фланцем с диаметром в 50 мм надежно фиксируются глубоко заходящими саморезами из прочного металла.

По материалу изготовления и конструкции гвоздя выделяют полипропиленовые грибки для крепежа, металлические и с термоголовкой. Первая группа включает в себя дюбеля с широкой перфорированной шляпкой, распираемые пластиковым стержнем, с выдерживаемой несущей нагрузкой не более 380 Н. Они используются для легких типов утеплителя, эксплуатируемого при температуре от -40 °C до +80 к вертикальным поверхностям и фасадам с прочной основой, к их главным преимуществам относят низкую теплопроводность (не более 0,004 Вт/м·°C), хорошую адгезию с бетоном, кирпичом и пеноблоками, коррозийную устойчивость и доступную стоимость. Но для высокоплотных видов или при планировании защиты прослойки изоляции тяжелыми стройматериалами они не подходят.

Грибки, распираемые ударопрочным металлическим гвоздем, при средних размерах 10×100 мм и шляпке со стандартным диаметром в 60 выдерживают нагрузку до 750 Н. Они выбираются при необходимости монтажа к потолку или отделке фасадов тяжелыми плитами каменной ваты. В целом они уступают пластиковым разновидностям в стойкости к коррозии, но при использовании вариантов с хорошим качеством покрытия металла служат достаточно долго. Но из-за отличий в коэффициенте термопроводности с самим утеплителем они образуют мостики холода, что снижает эффективность проведения наружной изоляции, при увеличении числа крепежей этот недостаток проявляется сильнее.

Оптимальные характеристики в плане устойчивости к коррозии, выдерживаемым нагрузкам и исключении теплопотерь наблюдаются у дюбелей с термоголовкой. Стальной стержень в данном случае закрывается пластиком, изделия не подвержены влиянию внешних воздействий. Область применения практически универсальна и включает монтаж любых термоизоляторов к основаниям из обычного и легкого бетона, кирпича, камня и дерева, наклон рабочей поверхности не имеет значения. Единственным недостатком является высокая цена.

Что следует учесть при выборе?

Расход элементов крепления на 1 м2 зависит от типа конструкции, ее высоты и месторасположения. На обычных участках фасада достаточно 4-5 штук, на углах – 6, при утеплении второго этажа зданий – 7, домов выше 20 м – 9. Помимо высоты учитывается толщина и плотность теплоизоляции, ветровые нагрузки и вес будущей отделки. Допустимый максимум составляет 10 дюбелей на 1 м2, нарушать его не рекомендуется из-за риска образования мостиков холода и экономической нецелесообразности.

При подборе варианта для пенополистирола предпочтение отдается разновидностям с шершавой изнутри шляпкой. Обращается внимание на качество антикоррозийной обработки, при риске проникновения осадков внутрь или при изоляции высотных зданий покупаются самые дорогие типы с металлическим распорным элементом и пластиковой термоголовкой. К учитываемым характеристикам помимо выдерживаемой нагрузки, веса и размеров относят температурный диапазон эксплуатации, в северных широтах не советуется использовать изделия для наружного утеплителя с гвоздем из пластика из-за риска их растрескивания. Схема расположения и общее количество продумывается заранее, после выбора термоизоляции и расчета толщины прослойки.

Нюансы монтажа теплоизоляции

Грибки для крепления плит фиксируются после подготовки основания и приклеивания к нему самого материала. Работы ведутся в следующей последовательности:

  • На поверхности пенопласта или минваты отмечаются точки расположения будущих крепежей с рекомендуемым интервалом не более 80 см по горизонтали, 30- по вертикали. При теплоизоляции оснований со сложной формой или использовании отдельных кусков стоит составить схему размещения дюбелей заранее.
  • В утеплителе и стенах подготавливается посадочное отверстие диаметром не более 10 мм.
  • Гриб размещается вручную вплоть до полного прижатия шляпки к изоляции.
  • Распорный элемент устанавливается внутрь до достижения максимального упора.
  • Закрытие шляпки пластиком (при разновидностях с термоголовкой).

По окончании монтажа всех дюбелей проводится заделка стыков, размещение пароизоляции, армирующей сетки и внешняя отделка. Работы выполняются после просыхания клеевого состава, на это уходит 2-3 дня. При необходимости крепления к дереву или металлу специализированные варианты используются вместе с дожимной манжетой из пластика, процесс установки в этом случае практически неотличим.

К важным нюансам технологии относят подбор правильной длины изделий и расчет их нужного расхода на 1 м2. Конструкция считается надежной при заглублении распорной гильзы в основание как минимум на 4,5 см, при работе с пористыми или слабыми материалами эту норму советуют увеличить до 10 см.

Осыпающая штукатурка или аналогичные отслаиваемые виды облицовки отрицательно влияют на качество крепежа, при проведении утепления пропускать подготовку поверхностей недопустимо. Рекомендуемая величина запаса составляет 1-2 см, ошибиться лучше в большую сторону.

Расценки

Бренд Основа D шай-бы, мм Р-ры крепежа, мм Мате-риалы корпуса Гвоздь Цена, рубли
Бюбель-гриб для утеплителя Tech-Krep Бетон, камень, кирпич, газосиликат 60 10×100 Полипропилен 2,5
То же, с термоголовкой 16×100 Полипро-пилен Сталь с покрытием из белого цинка 9
С металлическим гвоздем 12×100 5,6
Koelner с металлическим гвоздем и термоголовкой 10×200 Сталь с покрытием из желтого цинка 14
Дожимная манжета Рондоль Дерево 50 1,5
Телескопический крепеж Технониколь с саморезом Несущее основание кровли: профлист, бетон, дерево 10×200 Высокоп-рочный полимер Используется с металлическими саморезами Технониколь 8,2

Стоимость дюбелей для теплоизоляции зависит от продвинутости бренда, качества материала изготовления и размеров: длины гильзы и распорной части и диаметра шайбы. Изделия с металлическим гвоздем стоят в два раза больше полипропиленовых, крепления с термоголовками обходятся еще на порядок дороже. Экономить не рекомендуется, это сказывается на надежности фиксации, единственным способом снижения затрат является приобретение оптом.

  • Главная
  • Полезные статьи
  • Как рассчитать количество дюбелей

Первостепенной задачей для каждого, кто занимается подготовкой дома к круглогодичному проживанию и утеплением, является выбор креплений для теплоизоляции. При условии правильного выбора крепеж поможет надолго забыть о расходе тепла и быть уверенным в плотном прилегании теплоизоляции к фасаду. В остальных случаях изделия просто не смогут надежно зафиксировать утеплитель.

В зависимости от вида материала, используемого в качестве утеплителя, для крепления могут использоваться следующие разновидности изделий:

  • Специальный дюбель-гвоздь на основе пластика. Крепежи этого типа характеризуются минимальными показателями теплопроводности. За счет пластикового исполнения гвоздя, изделия имеют малый вес и сохраняют целостность теплоизоляции во время утепления здания. При этом, цена дюбель-гвоздей значительно ниже в сравнении с альтернативными крепежами. Дюбель монтажный с пластиковым гвоздем хорошо проявляет себя при креплении утеплителя малого веса.
  • Фасадный дюбель для быстрого монтажа с металлическим гвоздем. Дюбель монтажный для крепления теплоизоляции обладает большей прочностью. Максимальная величина нагрузок, которые выдерживает этот тип крепления составляет до 450-ти килограммов. Единственными минусами является большая теплопроводность и необходимость защиты от коррозии. Фасадный дюбель-гвоздь этого типа подходит в том числе для работы с тяжелым утеплителем и пористым материалом стен.

Пластмассовые дюбели делятся на нейлоновые и полипропиленовые. Первые используются при монтаже теплоизоляции к полнотелым, пустотелым и древесным материалам. Это универсальный вариант крепежа. Полипропиленовые дюбели выдерживают гораздо большую нагрузку до 750 килограммов в среднем. Они обладают большей прочностью.

Как рассчитать количество дюбелей и их длину?

Правильный расчет длины гарантирует максимальную прочность крепления для утеплителя. В случае использования тарельчатых грибов, получить оптимальную величину стержня можно с помощью следующей формулы:

L = E + H + R +V.

Под маркировкой Е подразумевается длина распора стержня на дюбеле. Н – представляет собой толщину утеплителя. R – это толщина слоя клея, если утеплитель будет дополнительно приклеиваться к поверхности. В свою очередь V определяет отклонение от вертикальной плоскости. Минимальная толщина распора, как правило, составляет от 45 миллиметров и более.

Расчет дюбелей для крепления утеплителя на один м2 осуществляется с учетом веса теплоизоляции. Например, для утеплителя типа пеноплекса, на 1 м2 уйдет всего 4 грибка, тогда как для базальтовой ваты понадобится в 1,5 раза больше. Формула расчета выглядит следующим образом:

W (количество) = S (площадь покрытия) * Q (количество дюбелей на каждый квадратный метр).

Не забывайте про запас. Минимум 6 штук дюбелей должны находиться под рукой на случай утери или поломки крепежа. При утеплении углов количество требуемых дюбель гвоздей увеличивается. Таким образом, «резерв» должен составлять минимум 12 штук.

Фасадные строительные полиэтиленовые дюбели служат для фиксации теплоизоляционных плит при утеплении сооружений, стены которых выполнены из различных материалов, в том числе кирпича и бетона разных марок. Их используют при монтаже вентилируемых фасадов, утеплении «мокрых» штукатурных фасадов, для выполнения качественного монтажа всевозможных систем утепления.

Применение

Применяются термоизоляционные дюбели для сквозного монтажа разных изоляционных материалов к:

  • строительному природному камню;
  • бетону;
  • газобетону;
  • пустотелым панелям.

Для выполнения монтажных работ на зданиях высотой менее 8 м специальные разрешения не потребуются.

Термоизоляционный дюбель для крепления теплоизоляции изготавливается из имеющего высокое качество полиэтилена высокого давления. Применяемые при их изготовлении конструктивные решения и материалы способны исключить влияние температур на прочность крепления, выполненного с помощью теплоизоляционных дюбелей. Параметры прочности изделий соответствуют значениям нормативных европейских стандартов ISO 2001.

Дюбель имеет широкую головку с коническими отверстиями и способен хорошо удержитать минеральный утеплитель, имея длинную зону расклинивания, он дает отличные показатели несущей нагрузки. Оригинальные технические решения используемые при изготовлении крепежных изделий способствуют упрощению работы с ними и служат гарантией прочности выполненных креплений.

Устройство и схема крепления

Из особенностей конструкции термоизоляционного дюбеля следует отметить его крепежную систему, состоящую из распорного дюбеля, оснащенного прижимным диском и гвоздя, имеющего специальную головку. Его диск имеет в диаметре 60 мм, его поверхность несколько шероховата.

Наличие технологических отверстий обеспечивает надежную фиксацию теплоизоляции к поверхности основания. Форма распорной зоны имеет оптимальную трехсекционную конструкцию, что исключает возможность вытягивания дюбеля из отверстия и обеспечивает надежность крепления.

Крепеж — это тарельчатый забивной дюбель с оцинкованным гвоздем или пластмассовым гвоздем. Применяется он для механического крепежа изоляционного материала при выполнении различных решений фасадных систем, в частности при монтаже «мокрых» и вентилируемых фасадов.

Схема крепления дюбеля

Область применения забивного строительного дюбеля — крепеж теплоизоляционных и облицовочных материалов при выполнении работ по утеплению стен пенополистиролом из бетона и кирпича, а также стенами, выполненными из других материалов.

Для выполнения монтажных работ средний расход дюбелей на 1 кв. м составит приблизительно 5-6 шт. Точное их количество необходимое для монтажа производится расчетным путем.

Для качественного выполнения крепежа теплоизоляционных материалов к стенам, подверженным высокому риску неблагоприятного воздействия атмосферных условий можно использовать качественные дюбели «ОМАХ» с металлическим или пластиковым гвоздем.

Утеплитель – материал неплотный, пористый, и, как правило, мягкий. В результате закрепляют его специфически: враспорку, на клей. Однако при достаточно объемных строительных работах необходимо использовать специальный крепеж – дюбель для утеплителя.

Особенности выбора дюбеля для утеплителя

Теплоизоляция – материал неоднородный, и, как правило, многослойный. Удерживать его силой трения, как это происходит в плотном материале невозможно. Кроме того, при креплении необходимо беспокоиться о его целостности, особенно в тех случаях, когда утеплитель комбинируется с гидроизоляцией и пароизоляцией.

О дюбелях-зонтиках для крепления фасадного утеплителя расскажет это видео:

Конструкция

Высокая сложность утеплителя, а, вернее говоря, комбинации тепло- и гидроизоляционного слоя породила 2 основных вида крепления, которые так и разделяются на группы по назначению.

  1. дюбель для фасадной теплоизоляции и утепления стен;
  2. крепеж для кровельной теплоизоляции.

Первый имеет всем известный вид: из-за широкого прижимного диска его называют тарельчатым или грибом. Конструкция это может быть цельной – собственно дюбель с головкой, а может быть разборной. Последняя состоит из нескольких элементов:

  • гильза с распорной частью. При креплении гладкая нераспорная часть оказывается в толще утеплителя, а распорная – в прочном материале стены или потолка;
  • головка в виде прижимного диска – составляет единое целое с дюбелем;
  • стержень – при забивании распирает гильзу.

По сути, кроме как большим объемом головки дюбель для утеплителя ничем не отличается от обычного.

Диаметр диска колеблется от 45 до 90 мм. В некоторых случаях на дюбель надевают дополнительный диск – рондоль, диаметром до 140 мм.

Устройство дюбеля для крепления утеплителя

Преимущества и недостатки

В абсолютном большинстве случаев используется пластиковый крепеж.

  • Во-первых, утеплитель – материал легкий и рыхлый, и не создает высокой нагрузки.
  • Во-вторых, металлический стержень при повышении прочности соединения, к сожалению, создает собой холодовый мостик. Теплопроводность металла намного ниже пластика и он буквально проводит сквозь теплоизоляцию холод. Чтобы этого избежать, выпускаются стальные гвозди для дюбеля с термоизолированной головкой.

Второй вид дюбеля, для теплоизоляции кровли – телескопический. Представляет собой полый пластмассовый стержень с широким прижимным диском. Монтируется он несколько необычно: устанавливается в тело теплоизолятора, а, вернее говоря, кровельного пирога, а гвоздь или анкер проходит насквозь стержень и погружается в плотный материал – бетон, профнастил.

Факторы подбора

При выборе изделия необходимо обращать внимание на ряд факторов.

  • Главный из них – достаточная длина. Она складывается из толщины теплоизоляция и других слоев, толщины клеевого состава, величины отклонения стены от вертикали и минимально возможного углубления.
  • Нагрузка на вырыв – каким бы легким ни был теплоизолятор, вес у него все же есть, а каждое крепление рассчитано на определенную нагрузку. Учитывать при этом нужно рабочую нагрузку, а не максимальную. Так, максимальная нагрузка для полипропиленового дюбеля составляет 60–150 кг. Однако рабочая может достигать лишь 25%, что приравнивается к 15–37 кг.

Разновидности крепежа

Форма изделия определяется спецификой закрепляемого материала: легкий и рыхлый теплоизолятор не выдерживает жесткого крепления. Пластмассовый прижимной диск как бы поддерживает утеплитель, а не закрепляют его.

Однако крепеж может отличаться устройством распорной части и материалом изготовления.

По конструкции

Различают 2 основных варианта крепежа.

  • Безраспорный – дюбель не комплектуется метизом и не нуждается в нем. Крепеж вставляют в высверленное отверстие сквозь теплоизоляционный материал. В стене или потолке дюбель удерживается за счет конструктивных выступов.
  • Распорный – в этом случае наличествует гвоздь или шуруп, который при закручивании или вбивании распирает тело стержня. Последний удерживается в материале стены за счет силы трения.

Распорный вариант чаще используют при креплении в плотный материал – бетон, полнотелый кирпич, а безраспорный годится для ячеистых бетонов.

По материалу

Для изготовления дюбеля используется только пластмасс, шуруп, если он есть, может быть сделан из пластика или из металла.

  • Полиамид – или нейлон. Прочный легкий материал, пригодный для монтажа в любую поверхность: кирпич, бетон, дерево, пустотелый кирпич. Максимальная нагрузка может достигать 120 кг, рабочая, соответственно – 30 кг.
  • Полипропилен – отличается более высокой прочностью, твердостью, максимальная нагрузка может достигать 150 кг. Рабочая для плотного материала составит около 40 кг.
  • Полиамид, армированный стекловолокном – относительно новый материал, по прочности мало уступающий металлу, но не имеющий его недостатка – высокой теплопроводности.

Распорный стержень может быть изготовлен из того же пластика, включая и армированный, а также из металла. Несущая способность последних выше, но теплоизоляцию они несколько нарушают.

Используется:

  • оцинкованная сталь – с толщиной цинка не менее 6 мкм;
  • нержавеющая сталь – крепеж куда более дорогостоящий, но абсолютно стойкий к коррозии. Применяется в помещениях с высокой влажностью.

Про конструкцию, которую имеют дюбели для крепления утеплителя к стене и другим поверхностям, читайте ниже.

Конструкционное исполнение

Имеется в виду сочетание материалов выполнения. Возможны 3 варианта:

  • дюбель и гвоздь выполняются из одного и того же пластика. Комбинировать разные пластики не рекомендуется, поскольку каждый из материалов характеризуется своим коэффициентом теплового расширения;
  • пластиковый дюбель и металлический стержень – прочность крепления очевидно выше и достигает 1,9 кН. Однако металл чересчур хорошо проводит тепло, и в теплоизоляционном слое образует собой холодовый мостик;
  • пластиковый дюбель-гриб для утеплителя и металлический стержень с термоголовкой – шляпка гвоздя покрывается нейлоновым колпачком. Сам шуруп оказывается внутри тела стержня. В этом случае проблема холодового мостика исчезает.

О том, какие дюбель-грибок для крепления утеплителя имеет размеры, читайте ниже.

О том, какие бывают дюбель-грибы для утеплителя, расскажет этот видеоролик:

Параметры

Статьи ГОСТ, регламентирующей пластмассовые дюбели для утепления, не существует. Однако требования к материалу полиамид для строительных дюбелей применяются, и в ГОСТ точно указано, какой марки пластик можно использовать и для каких климатических зон.

Отличается крепеж большой длиной: ведь дюбель должен углубляться в стену через немаленький слой теплоизоляции.

Остальные же размеры варьируются очень мало:

  • величина шляпки колеблется от 45 до 90 мм в диаметре;
  • на пластике встречается только 2 диаметра стержня – 8 и 10 мм;
  • длина изделия колеблется от 40 до 400 мм.

Несущая способность зависит от прочности крепежа и материала стены. Нагрузка колеблется от 0,3 кН до 23 кН.

10*80 2 10*90 15
10*90 2,5 10*120 16,75
10*100 6 10*140 20
10*120 8 10*160 32,2
10*140 9,8 10*180 44,5
10*160 11, 25 10*200 57,5
10*180 13,8 10*220 62
10*200 14,5 10*260 81,3
10*300 105,5

Про крепление плит утеплителя тарельчатыми дюбелями читайте ниже.

Монтаж

Особенности крепления определяются характеристиками материала. Теплоизолятор в большинстве случаев используется в виде панелей или листов. Такой материал фиксируется по правилам, что следует учитывать и при расчетах, и при утеплении.

Про расход дюбелей на 1м2 утеплителя читайте ниже.

Расчет дюбелей

Особенность расчетов состоит в том, что здесь несущая нагрузка не имеет решающего значения. Вес утеплителя оказывается величиной менее важной по сравнению с его толщиной и рыхлостью, а также по сравнению с характером стены или потолка. В паспорте изделия, конечно, указывается нагрузка на вырыв, но на практике она учитывается при выборе соответствующей длины изделия.

  • Длина – крайне важная характеристика, поскольку включает несколько величин: толщину утеплителя, толщину клеевого слоя или слоя паро- и гидроизоляции, или всего вместе, величину отклонения от вертикали и минимально допустимую величину заглубления в материал. Причем последняя указывается для каждого материала – плотного бетона, ячеистого, пустотелого кирпича и так далее. Все эти параметры обязательно указываются в сертификате, и на них нужно обратить самое пристальное внимание.
  • Диаметр шляпки – здесь рекомендации более приблизительны: чем более рыхлый, легкий материал используется, тем больше должен быть диаметр шляпки. Для пенопласта, например, можно выбирать изделия с минимальными головками. Для крепления минваты на потолке понадобятся диски крупные.
  • Количество дюбелей определяется не столько весом утеплителя, сколько удерживать 5 крепежей: 4 в углах, 1 в центре.
  • Если утеплитель монтируется на фасаде, где к нагрузке на вырыв добавляется ветровая нагрузка, креплений должно быть больше. На углах здания панель фиксируется не менее чем 6 дюбелями – расположены двумя параллельными рядами, при высоте здания до 20 м панели крепят из расчета 7 шт. на 1 кв. м – расположены двумя рядами и 1 в центре. Если здание выше 20 м, то утеплитель закрепляют из расчета 9 шт. на 1 кв. м.

Технология

Фиксация теплоизолятора проводится на промежуточном этапе монтажа. Некоторая сложность его состоит в том, что все нюансы крепежа необходимо учесть заранее. Например, если потолок, к которому позднее закрепится дюбель, покрыт штукатуркой, необходимо увеличить длину заглубления, особенно если штукатурка не новая, или же удалить ее вовсе.

  1. Утеплитель фиксируется на поверхности с помощью клея – пенопласт, пенополиуретан, или враспорку в каркасные ячейки – минвата.
  2. На панелях отмечают места крепления. Затем высверливают отверстия под крепеж прямо через утеплитель. Глубина отверстия в базовой поверхности должна быть на 10–15 мм больше расчетной.
  3. В отличие от обычных случаев здесь прочистить отверстие возможности нет. А если дюбель не заглубится в материал на достаточную глубину, удерживать даже теплоизолятор он не будет.
  4. Дюбель вставляют в отверстие, тарельчатая головка должно несколько прижимать материал.
  5. Затем, если он есть, в дюбель вбивают распорный гвоздь. Головка гвоздя закрывается колпачком, если используются гвозди с термоголовками.

Предпочтительнее для крепления выбирать места стыков, тем самым снижая общее количество щелей и отверстий. Кроме того, особенно при фасадных работах, рекомендуется после монтажа проклеить стыки алюминиевым армирующим скотчем.

Цены на тарельчатый дюбель (гриб, грибок, гвоздь) для крепления утеплителя даны ниже.

Дюбель-гвозди для теплоизоляции

Цена на работу и материалы

Теплоизоляция – непременная часть строительных и большинства ремонтных работ. Так что потребность в тарельчатом дюбеле для теплоизоляции всегда высока и от сезона не зависит. Выпускают изделия множество известных компаний.

  • Fischer – наверное, невозможно назвать такое крепежное изделие, которое не производила бы эта немецкая компания. Пластиковые дюбели обойдутся в 10–11 р. за шт. Крепеж из нейлоновой гильзы и гвоздя из оцинкованной желтопассивированной стали – в 13–37 р. за шт.
  • Mungo все возможные виды крепежа, в том числе и тарельчатый дюбель. Пластиковый вариант стоит от 6,6 до 14,3 р. за шт, вариант со стержнем из оцинкованной стали – от 9,8 до 18 р. за шт.
  • Koelner – известный на российском рынке польский изготовитель выпускает разного вида крепеж для теплоизоляции. Пластиковый крепеж для фасадной теплоизоляции стоит от 12 до 15 р. за шт. Вариант для кровельной теплоизоляции – телескопический, обойдется в 10–13 р. за шт.
  • Тех-КРЕП – российская компания, предлагающая крепеж для пустотелых и полнотелых материалов. Тарельчатый дюбель из полиамида с базальтопластиковым стержнем стоит от 8,8 до 14 р. за шт.

Дюбель для теплоизоляции – непременный участник работ по утеплению здания. Крепеж очень прост в обращении, не создает нагрузку и обеспечивает надежную фиксацию теплоизоляцию материала.

Как правильно крепить теплоизоляцию к стенам при помощи дюбелей, расскажет видео ниже:

Понравилась статья? Поделитесь с друзьями в социальных сетях:

И подписывайтесь на обновления сайта в Контакте, Одноклассниках, Facebook, Google Plus или Twitter.

Дизайн может быть более тихой версией застежки-липучки с разнообразными применениями — от подгузников до робототехники — ScienceDaily

Застежка-липучка с микроскопическим дизайном, который выглядит как крошечные грибы, может означать успехи для обычных потребителей и таких научных областей, как робототехника.

В статье Biointerphases , опубликованной AIP Publishing, исследователи из Университета Вагенингена в Нидерландах показывают, как в конструкции можно использовать более мягкие материалы и при этом оставаться достаточно прочной, чтобы работать.

Вероятностные крепления работают, потому что они разработаны с крошечным узором на одной поверхности, который сцепляется с элементами на другой поверхности. Доступные в настоящее время застежки, такие как липучки и 3M, называются застежками-липучками. Для этой конструкции требуется более твердый и жесткий материал, который вызывает громкий рвущий звук, когда они снимаются, и почему они могут повредить деликатные поверхности, такие как ткани, при прикреплении к ним.

Команда считает, что трехмерный грибовидный дизайн можно создать из более мягких и гибких материалов.Полусферические грибовидные формы обеспечивают достаточную силу сцепления с тканью и обеспечивают прочность.

Для исследования авторы использовали 3D-печать в сочетании с лепкой для создания мягких поверхностей с рисунком крошечных грибов. Затем этот материал был безопасно прикреплен к трем различным тканям и удален, не повредив их.

«Мы хотели доказать, что если вы выберете эти менее жесткие элементы, их можно использовать для прикрепления и отсоединения от мягких и нежных поверхностей, таких как ткани, без повреждений.Его можно использовать во многих сферах, например, для изготовления подгузников или бесшумных застежек для военных целей », — сказал автор Прити Шарма.« Еще предстоит провести много исследований, но грибовидная конструкция довольно хорошо работает с мягкими механическими застежками. «

Эта конструкция может привести к прогрессу в области мягкой робототехники. Мягкая робототехника направлена ​​на создание роботов, дизайн которых имитирует живых существ, таких как осьминоги, гусеницы и черви.

В такой робототехнике интерфейсы играют значительную роль.Благодаря достижениям, которые делают нынешний грибной дизайн сильнее, но сохраняют его мягкость, его можно использовать, чтобы помочь роботам ходить по стенам и потолкам, как геккон — животное, которое может это делать благодаря процессу прикрепления-отсоединения, который похож на то, как вероятностные крепления Работа.

Эта конструкция также может быть использована в захватах для роботов, используемых в сельском хозяйстве и других сельскохозяйственных работах, сказал Шарма.

Шарма сказал, что необходимы дополнительные исследования конструкции, прежде чем она будет готова к использованию в коммерчески доступном продукте.По ее словам, незначительные изменения формы гриба, возможно, удлинение или укорочение, чтобы сделать его более эффективным, могут привести к созданию еще лучшего продукта.

История Источник:

Материалы предоставлены Американским институтом физики . Примечание. Содержимое можно редактировать по стилю и длине.

Застежка в виде микроскопического гриба обещает быть

По словам исследователей, застежка микроскопической формы гриба может быть такой же прочной, как липучка, но с меньшим шумом и меньшим повреждением других тканей.Предоставлено: Прити Шарма.

Застежка-липучка с микроскопическим дизайном, похожая на крошечные грибы, может означать успехи для обычных потребителей и таких научных областей, как робототехника.

В статье Biointerphases , опубликованной AIP Publishing, исследователи из Университета Вагенингена в Нидерландах показывают, как в конструкции можно использовать более мягкие материалы и при этом оставаться достаточно прочной, чтобы работать.

Вероятностные крепления работают, потому что они разработаны с крошечным узором на одной поверхности, который сцепляется с элементами на другой поверхности. Доступные в настоящее время застежки, такие как липучки и 3M, называются застежками-липучками. Для этой конструкции требуется более твердый и жесткий материал, который вызывает громкий рвущий звук, когда они снимаются, и почему они могут повредить деликатные поверхности, такие как ткани, при прикреплении к ним.

Команда считает, что трехмерный грибовидный дизайн можно создать из более мягких и гибких материалов.Полусферические грибовидные формы обеспечивают достаточную силу сцепления с тканью и обеспечивают прочность.

Для исследования авторы использовали трехмерную печать в сочетании с лепкой для создания мягких поверхностей с рисунком крошечных грибов. Затем этот материал был безопасно прикреплен к трем различным тканям и удален, не повредив их.

«Мы хотели доказать, что если вы выберете эти менее жесткие элементы, их можно использовать для прикрепления и отсоединения от мягких и нежных поверхностей, таких как ткани, без повреждений.Его можно использовать во многих сферах, например, для изготовления подгузников или бесшумных застежек для военных целей », — сказал автор Прити Шарма.« Еще предстоит провести много исследований, но грибовидная конструкция довольно хорошо работает с мягкими механическими застежками. «

Эта конструкция может привести к прогрессу в области мягкой робототехники. Мягкая робототехника направлена ​​на создание роботов, дизайн которых имитирует живых существ, таких как осьминоги, гусеницы и черви.

В такой робототехнике интерфейсы играют значительную роль.Благодаря достижениям, которые делают нынешний грибной дизайн сильнее, но сохраняют его мягкость, его можно использовать, чтобы помочь роботам ходить по стенам и потолкам, как геккон — животное, которое может это делать благодаря процессу прикрепления-отсоединения, который похож на то, как работают вероятностные крепления .

Эта конструкция также может быть использована в захватах для роботов, используемых в сельском хозяйстве и других сельскохозяйственных работах, сказал Шарма.

Шарма сказал, что необходимы дополнительные исследования конструкции, прежде чем она будет готова к использованию в коммерчески доступном продукте.По ее словам, незначительные изменения формы гриба, возможно, удлинение или укорочение, чтобы сделать его более эффективным, могут привести к созданию еще лучшего продукта.


Правильный захват: создание мягких и чувствительных пальцев-роботов


Дополнительная информация:
Прити Шарма и др., На крючке грибов: приготовление и механика биоинспирированной мягкой вероятностной застежки, Biointerphases (2021).DOI: 10.1116 / 6.0000634

Предоставлено
Американский институт физики

Ссылка :
Застежка в виде микроскопического гриба перспективна (2021, 19 января)
получено 17 июля 2021 г.
с https: // физ.org / news / 2021-01-Microscopic-Mushroom.html

Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, никакие
часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в информационных целях.

голландских исследователей напечатали на 3D-принтере крепежный материал в виде грибов VELCRO

Ученые из голландского университета Вагенингена и Университета Гронингена напечатали на 3D-принтере новый клейкий материал с микроскопическим грибовидным дизайном.

Используя комбинированный подход к 3D-печати и формованию, команда смогла создать мягкий клей с грибовидным рисунком, который можно прикрепить к другим тканям, не вызывая шума или повреждений. При дальнейших исследованиях застежка может быть развернута, чтобы помочь мягким роботам ходить вертикально, или даже использоваться военными в качестве скрытой бесшумной застежки.

«Его можно использовать во многих областях, таких как подгузники или бесшумные застежки для военных целей», — прокомментировал Прити Шарма, один из авторов исследования.«Предстоит еще много исследований, но грибовидная конструкция довольно хорошо подходит для мягких механических креплений».

Голландские исследователи черпали вдохновение в грибах при создании нового клеящего материала (на фото). Фото из журнала Biointerphases.

Блокирующие устройства, вдохновленные природой

При ближайшем рассмотрении мир природы отличается множеством механических механизмов блокировки. Например, осы и пчелы эволюционировали, чтобы разработать естественные системы крепления крыльев к телу при приземлении, и многие из самых популярных в мире клеящих продуктов основаны на таких органических конструкциях.

VELCRO изначально был вдохновлен семенами лопуха, в то время как аналогичная система «3M Dual Lock» широко использовалась в медицинской и текстильной отраслях. Однако, как и многие застегивающие материалы, они имеют жесткие механизмы блокировки, которые оставляют длительные повреждения при прикреплении к определенным тканям, что ограничивает их использование в определенных областях.

Хотя в последние годы было разработано несколько альтернатив, в том числе с крючками в форме песта, их жесткость по-прежнему вызывает повреждения, что остается критическим недостатком.Чтобы преодолеть эти ловушки, голландская команда утверждает, что требуется новый класс безостаточных материалов, поэтому они решили разработать свой собственный клей, подверженный влиянию грибков.

Клей, напечатанный учеными на 3D-принтере, оказался менее опасным для образцов тканей, чем обычные застежки. Фото из журнала Biointerphases.

Печать грибовидных структур

Хотя литография часто используется для моделирования мягких эластомеров, создание соединяемых элементов требует субмиллиметрового уровня точности.В результате ученые решили напечатать свои клеи SLA 3D из полимера PDMS, и после того, как они были отформованы, материалы демонстрировали грибковые особенности размером всего 200 мкм.

Чтобы оценить эффективность их конструкции, голландская команда затем измерила силу, с которой образцы разной плотности «стягивали» три нейлоновых синтетических ткани. Результаты показали, что PDMS превосходит традиционный материал 3M с двойным замком во всех областях, прикрепляясь к каждой ткани, не вызывая каких-либо повреждений.

Однако, используя видеоанализ, ученые позже обнаружили, что давление, необходимое для фиксации застежки, было намного выше, чем достигнутое сцепление. Чтобы противостоять этому, голландская команда предположила, что в будущих версиях могут быть более короткие «грибовидные стебли», требующие меньшего сжатия для прикрепления к ткани.

Аналогичным образом было обнаружено, что образцы с более высокой структурной плотностью достигают большей адгезии, поскольку присутствие соседних грибов, по-видимому, стимулировало большее проникновение нейлона.В целом, застежка ученых достигла максимального прикрепления 64 мН / см 2 , но, хотя это меньше, чем в предыдущих исследованиях, они сделали это без повреждения основного материала.

В целом, команда считает своим главным прорывом способ, которым они смогли активно настраивать свойства своей застежки на протяжении всего исследования. В будущем материал можно будет использовать в качестве захватов для вертикальной мягкой робототехники или развернуть в сельскохозяйственных условиях в приложениях конечного использования.

Прецизионность микротехнологий

В то время как исследователям удалось напечатать свой материал с размерами до 200 мкм, недавний рост технологий микротехнологии позволил точнее производить детали, которые еще меньше и сложнее.

Специалист по микромасштабной 3D-печати Boston Micro Fabrication (BMF), например, производит системы, которые, как сообщается, могут изготавливаться в масштабе, более чем в 100 раз меньшем, чем человеческий волос.Компания продает свою запатентованную технологию через свои машины microArch, которые она провела ребрендингом и выпустила в прошлом году.

Немецкий производитель двухфотонных систем Nanoscribe тем временем использует свою технологию в качестве средства питания своего 3D-принтера Quantum X. Последняя машина фирмы способна изготавливать как преломляющую, так и дифракционную микрооптику наноразмеров с деталями размером до 200 микрон.

В апреле 2019 года компания nScrypt, специализирующаяся на микродозировании, получила патент на прецизионный портальный 3D-принтер.Если он будет запущен в производство, станок на основе модульных балок может иметь несколько систем управления движением, что позволит пользователям печатать более крупные объекты с большей степенью точности.

Выводы исследователей подробно описаны в их статье под названием « Зацепившиеся за грибы: приготовление и механика биоинспирированной мягкой вероятностной застежки». ». Соавторами исследования выступили Прити Шарм, Витторио Саггиомо, Винсент ван дер Доеф, Марлин Камперман и Джошуа А. Дийксман.

Чтобы быть в курсе последних новостей о 3D-печати, не забудьте подписаться на информационный бюллетень 3D Printing Industry или подписаться на нас в Twitter или поставить лайк на нашей странице на Facebook .

Вы ищете работу в индустрии аддитивного производства? Посетите 3D Printing Jobs , чтобы узнать о вакансиях в отрасли.

На изображении показано, как исследователи напечатали на 3D-принтере материал, вдохновленный грибами. Фото из журнала Biointerphases.

Оценка коррозии крепежа и повреждения солей в трюме Eureka

Лесная служба США
Уход за землей и обслуживание людей

Министерство сельского хозяйства США

  1. Оценка коррозии крепежа и солевых повреждений в трюме Eureka

    Автор (ы): Сэмюэл Л.Zelinka ; Грант Т. Киркер
    Дата: 2018
    Источник: Research Note FPL-RN-0356. Мэдисон, Висконсин: Министерство сельского хозяйства США, Лесная служба, Лаборатория лесных товаров. 1-9.
    Серия публикаций: Research Note (RN)
    Станция: Лаборатория лесных товаров
    PDF: Скачать публикацию
    (3,0 МБ)

    Описание

    В этом отчете резюмируется проверка на коррозию и солевые повреждения парома Eureka National Historical Landmark, построенного в 1890 году и выставленного в Морском национальном историческом парке Сан-Франциско в США.S. Служба национальных парков (NPS). NPS связалась с Лесной службой Министерства сельского хозяйства США и лабораторией лесных товаров (FPL) из-за опасений по поводу белых «продуктов коррозии», которые образовывались на металлических болтах в трюме Eureka . На фотографиях, предоставленных NPS, были обнаружены следы солевого повреждения древесины в дополнение к корродированным болтам. По итогам разговоров между ФПЛ и НПС была проведена проверка. В этом отчете резюмируются результаты инспекции и даются рекомендации, которые можно использовать для сохранения «Эврики», а также возможные действия, которые необходимо предпринять во время следующей постановки корабля в сухой док.

    Примечания к публикации

    • Мы рекомендуем вам также распечатать эту страницу и прикрепить ее к распечатке статьи, чтобы сохранить полную информацию о цитировании.
    • Эта статья была написана и подготовлена ​​государственными служащими США в официальное время и поэтому находится в открытом доступе.

    Ссылка

    Zelinka, Samuel L .; Киркер, Грант Т. 2018. Оценка коррозии крепежа и повреждения солей в трюме Eureka .Записка об исследовании FPL-RN-0356. Мэдисон, Висконсин: Министерство сельского хозяйства США, Лесная служба, Лаборатория лесных товаров. 1-9.

    Процитировано

    Ключевые слова

    Коррозия, солевые повреждения, разложение коричневой гнили, механизмы повреждения, оценка состояния

    Связанный поиск


    XML: Просмотр XML

Показать больше

Показать меньше

https://www.fs.usda.gov/treesearch/pubs/56317

Выбор правильного типа крепежа для обработки древесины под давлением

Пиломатериалы, обработанные под давлением, представляют собой отличный материал с точки зрения водостойкости и различных типов грибы, а также термиты.Вот почему он широко используется в коммерческих, промышленных и жилых помещениях. От закрытых плавательных бассейнов до железнодорожных шпал, от детских площадок до причалов и террас, обработанная под давлением древесина выросла […]

Пиломатериалы, обработанные под давлением, представляют собой превосходный материал с точки зрения устойчивости к воде и различным видам грибков, а также термитам. Вот почему он широко используется в коммерческих, промышленных и жилых помещениях. От крытых плавательных бассейнов до железнодорожных шпал, от детских площадок до причалов и террас для террас — обработанная под давлением древесина отвечает всем требованиям.Однако перед выбором наиболее подходящего типа пиломатериалов, обработанных давлением, для определенного проекта — большого или малого — необходимо изучить методы обработки, а также оптимальные решения для крепления. Давайте уточним.

Как получается древесина, обработанная под давлением?
В зависимости от типа консерванта, используемого при обработке пиломатериалов, мы имеем:

  • Консерванты на водной основе, обработанные древесиной, включая такие соединения, как CCA, AZCA или ACQ (самая безопасная категория, надежная для внутренних работ и наружных конструкций, таких как дорожные столбы, шумоподавляющие барьеры и т.)
  • Древесина, обработанная креозотовым консервантом
  • Древесина, обработанная консервантами на масляной основе

Чтобы создать эффективную защиту от воды и насекомых, древесина помещается в цилиндр и подвергается высокому давлению. Это заставляет химические соединения проникать в структуру древесины и обеспечивать долговременную защиту.
EPA определило, что, несмотря на то, что такие вещества, как мышьяк, присутствуют в списке химикатов, попавших в древесину под давлением, риск утечки равен нулю.Таким образом, этот материал можно использовать даже для таких деликатных проектов, как опоры для томатов или опоры для виноградников.

Почему выбор правильного типа крепежа особенно важен для пиломатериалов, обработанных давлением?
Прежде всего, выбор пиломатериалов, обработанных под давлением, подразумевает, что конструкция или сборка будут подвергаться значительному воздействию влаги либо из-за оборудования, работающего в непосредственной близости, либо из-за климатических условий. Во-вторых, имейте в виду, что, хотя древесина имеет плотный химический слой, который предотвращает проникновение влаги в ее молекулярную структуру в течение длительного времени, стандартные крепежные элементы этого не делают.Поэтому выбор устойчивых к коррозии шурупов, болтов, соединителей и гвоздей — дело непростое.
Крепеж из нержавеющей стали
Крепеж из нержавеющей стали и, в частности, крепеж из сплавов класса 304 и 305 представляют собой наиболее эффективные антикоррозионные решения для деревянных конструкций, подвергающихся обработке давлением. Тем не менее, конструкции и агрегаты, возводимые в прибрежных районах, могут получить больше преимуществ от сплавов нержавеющей стали класса 316. Важно отметить, что сплавы нержавеющей стали класса 410 обеспечивают ограниченную защиту от коррозии и не должны использоваться в конструкциях этого типа.
Обратной стороной нержавеющей стали является то, что цена значительно выше, чем на крепежные изделия из горячеоцинкованной стали. В то же время два типа материалов нельзя использовать вместе, потому что хромовое покрытие сплава нержавеющей стали имеет тенденцию ускорять развитие коррозии за счет взаимодействия с цинком HDG.
Крепежные детали из горячеоцинкованной стали
Намного менее дорогое производство — и, очевидно, покупка — цинковое покрытие, нанесенное на сталь путем их введения в чан с температурой 850 градусов по Фаренгейту, расплавленный цинк должен обеспечивать вышеупомянутое приличное сопротивление коррозии в приложениях, в которых используется обработанная под давлением древесина.Кроме того, «заживут» даже вмятины до четверти цинкового покрытия крепежа. Таким образом, бюджетные крепежные детали HDG в этом случае представляют собой превосходное крепежное решение.

новых антибактериальных продуктов предотвращают появление вирусов, грибов и бактерий

Резюме пресс-релиза:
  • Изготовлен из специальных добавок с подмешиванием ионов серебра, а на металлические детали нанесены порошковые покрытия на основе молибдата цинка
  • Разрушает клеточные стенки микроорганизмов, вызывая их гибель
  • Идеально подходит для домов престарелых, аптек, школ, предприятий пищевой промышленности и крупного животноводства

Оригинальный пресс-релиз:

Остановка микробов на их следах

Контактные инфекции, вызванные вирусами, грибками и бактериями, были проблемой еще до пандемии — и теперь JW Winco расширяет ассортимент антибактериальных продуктов Sanline.

Количество бактерий с высокой устойчивостью к обычным антибиотикам растет в течение многих лет, особенно в больницах. Эти инфекции могут стать серьезной проблемой даже за пределами медицинских учреждений. Дома престарелых, аптеки, школы и предприятия по производству продуктов питания, а также крупномасштабное животноводство также представляют собой районы, подверженные значительному риску.

Одна часть решения включает поверхности, с которыми люди соприкасаются — другими словами, ручки, кнопки, переключатели, вилки, столы, клавиатуры и даже сенсорные экраны.Бактерии, грибки и вирусы могут накапливаться в этих местах, образовывать биопленку, которая способствует росту и, в конечном итоге, передаваться следующему пользователю. Поэтому надежное прерывание этого очень простого пути передачи данных является стоящей задачей. Чем меньше микроорганизмов присутствует на таких поверхностях, тем ниже риск заражения.

Частая чистка и дезинфекция — одно из решений, но оно может привести к ошибкам и может вызвать проблемные пробелы. Гораздо эффективнее и надежнее, чтобы сами поверхности обладали антимикробным действием.Любые микроорганизмы, контактирующие с такими поверхностями, автоматически деактивируются, что предотвращает их передачу. Причем такие эффекты могут быть очень продолжительными.

Winco начала решать эту чрезвычайно важную социальную проблему много лет назад, добавляя антибактериальную защиту к целому ряду стандартных деталей, сгруппированных в семейство продуктов Sanline. В различных элементах управления — кнопках, ручных рычагах, U-образных ручках и барашковых гайках — используются два разных принципа. В случае пластмасс подмешиваются специальные добавки с ионами серебра, а на металлические детали наносятся порошковые покрытия на основе молибдата цинка.

Оба принципа разрушают клеточные стенки микроорганизмов, вызывая их гибель. Для человека контакт с такими активированными поверхностями не представляет никакого риска. Особый интерес представляют добавки молибдата цинка. С помощью влаги воздуха на поверхности образуется кислая пленка с pH около 4,5, аналогичная той, что есть на коже человека. Протоны кислоты проникают через клеточную мембрану бактерий, быстро их разрушая.

Оба принципа остаются эффективными в течение длительного времени, даже несмотря на частые чистки.Примечание: антибактериальные свойства не заменяют чистку или дезинфекцию, но служат дополнительной мерой на длительный срок.

Более подробную информацию о стандартных деталях Winco можно найти в Интернете по адресу: www.jwwinco.com.

Связаться с этой компанией

Другие товары от Fasteners & Hardware

Защитные средства для древесины (древесина, обработанная под давлением)

Распространенное заблуждение относительно гниения древесины состоит в том, что это происходит только из-за воздействия влаги.Разложение на самом деле происходит из-за сочетания влаги, умеренных температур и поступления кислорода. Эти три фактора способствуют росту грибков в древесной ткани, вызывая ее гниение.

Два основных типа грибковой гнили известны как мокрая гниль и сухая гниль. Одно из основных различий между влажной гнилью и сухой гнилью заключается в том, что для роста влажной гнили требуется более высокое содержание влаги. Грибок влажной гнили любит расти на древесине с высоким содержанием влаги около 50% и выше, тогда как сухая гниль прорастает при более низком содержании влаги в древесине от 20% до 30%.

Сухая гниль — это серьезная форма гниения, которая может постоянно разрушать древесину и другие материальные ценности. Влажная гниль более распространена и более локализована, обычно поражая древесину только в источнике протечки или другой влажности. Однако мокрая гниль может быть серьезной, если не обрабатывать конструкционные деревянные элементы или если источник воды расширяется.

Помимо грибов, древесину могут повредить такие насекомые, как термиты и муравьи-плотники. Это повреждение может произойти в сухих помещениях и может вызвать значительные повреждения конструкции.

Необходимо знать природу насекомых или грибов, поражающих древесину, и условия, необходимые для их роста. Затем вы можете выбрать стойкую древесину, предварительно обработать древесину, чтобы предотвратить заражение насекомыми и рост грибка, или обработать древесину после того, как рост грибка начнется, чтобы остановить распространение.

Древесина с естественной устойчивостью к гниению

Устойчивые к гниению древесные породы, включая кипарис, кедр, саранчу и красное дерево, могут использоваться для снижения вероятности гниения древесины.Эта древесина преимущественно используется в открытых местах, таких как сайдинг из гонтовой черепицы, внешние настилы и балконы. Они не требуют обработки, чтобы противостоять гниению.

Кедровая черепица устойчивая к гниению

Обработанная под давлением древесина для предотвращения гниения

При обработке древесины под давлением химические вещества проникают глубоко в древесину. Эта обработка проводится с помощью вакуумного баллона. Древесина помещается внутрь пылесоса, и из нее забирается воздух, чтобы полностью высушить древесину. Затем цилиндр заливается выбранным консервантом под высоким давлением, чтобы обеспечить его глубокое проникновение в древесину.Затем древесину дают высохнуть перед нанесением финишного покрытия, если это необходимо.

Обработанная под давлением древесина защищает древесину по всей древесине (в том числе глубоко внутри), что делает ее менее восприимчивой к гниению, паразитам и атакам насекомых.

Пиломатериалы, обработанные под давлением, обычно имеют зеленоватый оттенок.

Применяемые средства для предотвращения гниения

Еще один метод обработки древесины — нанесение жидких средств местного действия. Они включают применение различных типов жидких консервантов, которые могут содержать биоциды, инсектициды, пестициды и т. Д.Обычно их наносят на наружную древесину, чтобы защитить их от элементов, насекомых и защиты от ультрафиолетового излучения.

Их обычно наносят кистью или распылителем, при этом химикаты впитываются в древесину, чтобы обеспечить ей желаемую защиту. Основная проблема применяемых обработок заключается в том, что они лишь частично впитывают древесину, поэтому древесина может не иметь полной защиты, особенно на необработанной стороне.

Типы консервантов для древесины

Существует два основных типа консервантов для древесины: химические вещества на масляной и водной основе.Оба включают химическую смесь, которая либо наносится, либо пропитывается древесиной, как описано выше.

Консерванты масляного происхождения

Консерванты на масляной основе, такие как креозот и пентахлорфенол (ПХФ), могут применяться для защиты древесины от гниения. Однако оба из них имеют серьезный риск для здоровья, и их обычно следует избегать.

Креозот преимущественно использовался для обработки деревянных конструкций на открытом воздухе для предотвращения гниения и добавлялся путем обработки давлением.Он все еще используется в некоторых условиях, но больше не разрешен для использования в жилых помещениях.

PCP может использоваться как пестицид и дезинфицирующее средство и может наноситься распылением, кистью, окунанием и замачиванием древесины или методом обработки под давлением. Это включает помещение древесины в сосуд для обработки под давлением, где она погружается в ПХФ, а затем подвергается действию давления.

Продукты нефтяного происхождения, включая медь, такие как нафтенат меди, считаются более безопасной альтернативой креозоту или ПХФ.Однако следует проявлять осторожность, поскольку риски для здоровья до сих пор полностью не известны.

Консерванты на водной основе

Консерванты на водной основе включают щелочные четвертичные соединения меди, азол меди, аммиачный арсенат меди и цинка, цитрат меди и HDO меди.

Консерванты на водной основе обычно являются одними из самых дешевых вариантов, доступных для потребителей. Однако их самый большой недостаток заключается в том, что древесина может быть повреждена из-за присутствия воды в консерванте.Нанесение может и часто приводит к разбуханию и / или короблению обрабатываемой древесины, особенно если она уже пористая. Тяжелые металлы (медь) в химическом веществе также могут быть опасными для здоровья и окружающей среды.

Хромированный арсенат меди (CCA) был традиционным химическим веществом, используемым для обработки древесины под давлением. Возможно, вы знакомы с зеленым оттенком и ощущением влаги при таком уходе. Однако, начиная с 2003 года, CCA был прекращен из жилищного строительства из-за проблем со здоровьем и окружающей средой, связанных с содержанием хрома и мышьяка в химическом веществе.

Борат — консервант на основе борной кислоты. Он считается более безопасной альтернативой другим консервантам, поскольку не содержит тяжелых металлов, таких как медь. Однако проблема с боратом заключается в том, что он может вытягиваться из древесины при многократном воздействии большого количества воды.

Азолы меди стали стандартом для пиломатериалов, обрабатываемых под давлением, и эта продукция претерпела эволюцию.

Азол меди типа B (CA-B) содержал смесь меди и азола в качестве двух основных защитных средств.

Азол меди типа C (CA-C) является наиболее распространенной формой консерванта и включен в стандарт AWPA U1. Это раствор растворенной меди с множеством азолов. CA-C одобрены для использования во всех типах строительства и не имеют каких-либо специальных ограничений EPA для обработки древесины.

Микронизированный азол меди (MCA-C) Пиломатериал, обработанный , становится все более популярным в качестве консерванта для древесины. Вместо растворения медь тонко измельчается, а затем суспендируется в жидкости (с азолами), которая используется для обработки древесины.Несмотря на то, что он не имеет статуса спецификации AWPA U1 (см. Ниже), многие производители проверяли свои химические вещества Службой оценки Международного совета кодексов и получали отчеты об оценке, которые указывают на соответствие Международным строительным нормам. Архитекторы и разработчики должны убедиться, что выбранные ими продукты MCA-C имеют текущий отчет об оценке ICC-ES.

Новые консерванты

Из-за рисков для здоровья и окружающей среды, связанных с традиционными химическими консервантами для древесины, ряд других методов консервации древесины проходит испытания с переменным успехом.К сожалению, опасные химические вещества, по-видимому, превосходят менее опасные версии, но есть несколько многообещающих вариантов, включая уксусный ангидрид, льняное масло и фурфуриловый спирт.

Снижение риска гниения: борьба с гниением древесины

Лучшим вариантом решения проблемы гнили древесины является замена поврежденных элементов и устранение причины проблемы. Однако бывают обстоятельства, при которых гниль минимальна, и вы не хотите заменять поврежденную древесину.

Гниение древесины на подоконнике, где часто скапливается вода.

Первый этап лечения — это привлечение специалиста для диагностики причины и типа гниения древесины и определения необходимости замены.

Для решения проблем с влажной гнилью важно сначала определить источник влаги и устранить причину сырости. Как вариант, вы можете изолировать древесину от источника влаги перед обработкой пораженных участков. Во многих случаях вам потребуется заменить поврежденные бревна. Однако в некоторых случаях мокрую гниль можно остановить, обработав древесину фунгицидом. Обработка влажной гнили включает применение фунгицидов во время и после периода высыхания. Эти методы обработки остановят дальнейшее ухудшение, если будет остановлен источник проникновения воды.

С сухой гнилью бороться труднее: древесина должна быть обработана фунгицидом, а окружающие материалы стерилизованы биоцидом. Как и в случае с мокрой гнилью, необходимо заменить древесину с нарушенной структурой.

Зараженные насекомыми, такие как древоточцы или термиты, как правило, уничтожаются с помощью инсектицидов. Опять же, структурно поврежденную древесину необходимо заменить, как только заражение насекомыми будет устранено. Затем следует продолжить регулярное профилактическое лечение.

Смолы или другие материалы для заполнения древесины можно использовать для косметического ремонта поврежденной древесины, но никогда не должны использоваться для ремонта поврежденных структурных компонентов.

Соответствующие крепежные детали

Химические вещества, используемые для консервирования древесины, могут вызывать коррозию оборудования, такого как гвозди, шурупы, подвески и т. Д. Например, гальваническое воздействие может вызвать взаимодействие меди во многих консервантах с алюминием, сталью или цинком. Поэтому важно использовать крепежные детали с надлежащим покрытием, чтобы предотвратить коррозию.Компании, производящие химические вещества для защиты древесины, предоставляют архитекторам и разработчикам рекомендации по выбору подходящих крепежных элементов, которые могут различаться в зависимости от используемого химического вещества. Некоторые компании указывают, что можно использовать обычные крепежи и вешалки, поэтому всегда лучше проверять их документацию.

Следует избегать обработки древесины под давлением с прямым контактом с алюминием (например, оклейки) во избежание коррозии. Тем не менее, есть некоторые производители с продуктами, которые могут использоваться в прямом контакте с алюминием, поэтому проконсультируйтесь с ними, прежде чем уточнять детали.Альтернативный подход, когда требуется алюминиевый оклад, заключается в разделении алюминия и обработанной под давлением древесины водонепроницаемой строительной тканью или бумагой.

Поскольку вода является основным фактором гальванического воздействия, вы можете рассмотреть возможность зенковки и затыкания крепежных деталей. Это исключает возможность попадания воды в бассейн, контактирующего с деревом и металлами.

Окрашивание древесины, обработанной давлением

Что касается добавления цвета к пиломатериалам, обработанным под давлением, серия публикаций Лаборатории лесных товаров указывает на то, что лучше всего использовать полупрозрачные морилки на масляной основе для древесины, обработанной консервантами.Новые консерванты для древесины имеют менее зеленый оттенок, что должно помочь окрашиванию более естественного цвета. Однако архитектору важно увидеть окончательные образцы окрашенной древесины перед установкой.

не рекомендуется красить обработанную под давлением древесину , потому что содержание влаги велико, поэтому краска не будет также хорошо сцепляться с древесиной. Если вы хотите покрасить обработанную древесину, вы можете выбрать древесину, подвергнутую сушке в печи (KDAT) под давлением, которая имеет более низкое содержание влаги. Однако лучшим решением будет использовать дерево, устойчивое к гниению (кедр, тик), если вы планируете красить его — конечно, это дороже и, как правило, лучше выглядит без отделки.

Окрашивание необработанной древесины обеспечит некоторый уровень защиты поверхности от погодных условий, но никак не предотвратит нападение грибка или насекомых. Защиту, получаемую от краски, можно усилить, если перед покраской нанести жидкий консервант для древесины, который поможет защитить древесину от заражения насекомыми и грибками. Обработка всех сторон дерева, включая торцы, грунтовкой на масляной основе и консервантом помогает обеспечить эту дополнительную защиту.

Спецификация и идентификация обработанной древесины

Американская ассоциация защиты древесины была основана в 1904 году как орган, устанавливающий стандарты защиты и сохранения древесины.

AWPA разработало Систему категорий использования, введенную в 1999 г., для определения уровней опасности биоразрушения для изделий из обработанной древесины. Эта система помогает разработчикам и пользователям выбрать подходящую обработку для их конкретного деревянного изделия. Как домовладельцы, так и архитекторы найдут этот простой PDF-файл с диаграммой категорий, который будет полезен при выборе правильной древесины.

Обработанная консервантом древесина регулируется стандартом AWPA U1, который используется в качестве ссылки в кодах ICC.Спецификация включает вызов стандарта U1 плюс соответствующая категория использования. Это описано в документе AWPA Как указать изделия из обработанной древесины .

Обработанная древесина от известных продавцов включает бирку, прикрепленную к концу доски. Этот тег предоставляет информацию об обработке, включая: производителя, допустимое воздействие, стандарт AWPA, категорию использования, информацию инспекционного агентства, тип консерванта и удерживание (количество консерванта в древесине).

Пример концевой бирки для древесины, обработанной давлением

Некоторые изделия из древесины, обработанной давлением, не соответствуют требованиям AWPA U1, но могут использоваться в проектах, соответствующих нормам. Например, как описано ранее в этой статье, микронизированный азол меди (MCA-C) является приемлемым консервантом для древесины, поскольку он был оценен Службой оценки Международного совета кодов. Архитекторы должны подтвердить, что указанные ими несовместимые с U1 продукты имеют соответствующий отчет об оценке ICC-ES и что этот отчет является актуальным.Желательно, чтобы это было включено в проектную документацию для записи.

Опасности для древесины, обработанной давлением

Мы обсудили ряд проблем со здоровьем и окружающей средой, вызванных химическими веществами, используемыми в консервантах для древесины. Подробный анализ этих проблем выходит далеко за рамки данной статьи, но Агентство по охране окружающей среды США предоставляет Обзор химикатов для защиты древесины .

Крайне важно, чтобы плотники и домашние мастера понимали, как защитить себя от химикатов, содержащихся в предварительно обработанных деревянных изделиях.У всех производителей есть паспорта безопасности, которые помогут вам понять, какие средства индивидуальной защиты вам нужны. Проверьте бирку на дереве, чтобы найти производителя, и свяжитесь с ним для получения соответствующей информации.

Previous PostNextNext Post

Добавить комментарий

Ваш адрес email не будет опубликован.