Сравнение теплопроводности утеплителей по толщине: Сравнение основных характеристик различных утеплителей: теплопроводности и плотности, гигроскопичности и толщины. Что такое теплоизоляционные материалы: сравнительные характеристики теплопроводности
Содержание
Теплопроводность утеплителей: назначение, таблица, критерии выбора
Выбор теплоизоляционных материалов на современном рынке огромен. Производители выпускают различные по структуре, плотности, звукоизоляционным характеристикам и влагостойкости модели. Потребителям необходимо знать теплопроводность утеплителей и критерии подбора. Подробное сравнение всех видов поможет найти идеальный для постройки материал.
Содержание
- Понятие теплопроводности
- Факторы влияния на теплопроводность
- Характеристики разных материалов
- Пенопласт
- Экструдированный пенополистирол
- Минеральная вата
- Базальтовая вата
- Стекловата
- Вспененный полиэтилен
- Напыляемая теплоизоляция
- Таблица коэффициентов теплопроводности разных материалов
- Иные критерии подбора утеплителей
- Объемный вес
- Способность держать форму
- Паропроницаемость
- Горючесть
- Звукоизоляция
- Практическое применение коэффициента теплопроводности
Понятие теплопроводности
Утеплители имеют разный коэффициент теплопроводности — это главный показатель материала
Под теплопроводностью понимается передача энергии тепла от объекта к объекту до момента теплового равновесия, т. е. выравнивания температуры. В отношении частного дома важна скорость процесса – чем дольше происходит выравнивание, тем меньше остывает конструкция.
В числовом виде явление выражается через коэффициент теплопроводности. Показатель наглядно выражает прохождение количества тепла за определенное время через единицу поверхности. Чем больше величина, тем быстрее утекает тепловая энергия.
Теплопередача различных материалов указывается в характеристиках изготовителя на упаковке.
Факторы влияния на теплопроводность
Теплопроводность зависит от плотности и толщины теплоизолята, поэтому важно учитывать ее при покупке. Плотность – это масса одного кубометра материалов, которые по этому критерию классифицируются как очень легкие, легкие, средние и жесткие. Легкие пористые изделия применяются для покрытия внутренних стен, несущих перегородок, плотные – для наружных работ.
Модификации с меньшей плотностью легче по весу, но имеют лучшие параметры теплопроводности. Сравнение утеплителей по плотности представлено в таблице.
Материал | Показатель плотности, кг/м3 |
Минвата | 50-200 |
Экструдированный пенополистирол | 33-150 |
Пенополиуретан | 30-80 |
Мастика из полиуретана | 1400 |
Рубероид | 600 |
Полиэтилен | 1500 |
Чем выше плотность, тем меньше уровень пароизоляции.
Толщина материала также влияет на степень теплопередачи. Если она избыточная, нарушается естественная вентиляция помещений. Маленькая толщина становится причиной мостов холода и образования конденсата на поверхности. В результате стена покроется плесенью и грибком. Сравнить параметры толщины материалов можно в таблице.
Материал | Толщина, мм |
Пеноплекс | 20 |
Минвата | 38 |
Ячеистый бетон | 270 |
Кладка из кирпича | 370 |
При подборе толщины стоит учитывать климат местности, материал постройки.
Характеристики разных материалов
Перед рассмотрением таблицы теплопроводности утеплителей имеет смысл ознакомиться с кратким обзором. Информация поможет застройщикам разобраться в специфике материала и его назначении.
Пенопласт
Пенопласт и пенополистирол отличаются способом производства, ценой и теплопроводностью
Плитный материал, изготовленный посредством вспенивания полистирола. Отличается удобством раскроя и монтажа, низкой теплопроводностью – в сравнении с другими изоляторами пенопласт легче. Преимущества изделия – недорогая стоимость, стойкость к влажной среде. Минусы пенопласта – хрупкость, быстрая возгораемость. По этой причине плиты толщиной 20-150 мм используются для теплоизоляции легких наружных конструкций – фасадов под штукатурные работы, стены цоколей и подвалов.
При горении пенопласта выделяются токсичные вещества.
Экструдированный пенополистирол
Вспененный полистирол с экструзией отличается стойкость к воздействию влажной среды. Материал легко раскраивается, не горит, прост в укладке и транспортировке. У плит помимо низкой теплопроводности – высокая плотность и прочность на сжатие. Среди российских застройщиков популярен экструдированный пенополистирол брендов Техноплекс и Пеноплекс. Его применяют для теплоизоляции отмостки и ленточного фундамента.
Минеральная вата
Чем плотнее плиты минеральной базальтовой ваты, тем хуже они проводят тепло
Коэффициент теплопроводности минеральной ваты – 0,048 Вт/(м*С), что больше пенопласта. Материал изготавливается на основе горных пород, шлака или доломита в форме плит и рулонов, у которых разный индекс жесткости. Для утепления вертикальных поверхностей допускается применять жесткие и полужесткие изделия. Горизонтальные конструкции лучше утеплять при помощи легких минплит.
Несмотря на оптимальный индекс теплопроводности, у минеральной ваты маленькая устойчивость к влажной среде. Плиты не подойдут для утепления подвальных помещений, парилок, предбанников.
Применение минваты с низкой теплопроводностью допускается только при наличии пароизоляционного и гидроизоляционного слоев.
Базальтовая вата
Основой для изоляции является базальтовый вид горной породы, который раздувается при нагреве до состояния волокон. При изготовлении также добавляют нетоксичные связующие компоненты. На российском рынке продукция бренда Роквул, на примере которой можно рассмотреть особенности утеплителя:
- не подвергается возгоранию;
- отличается хорошим показателем тепло- и звукоизоляции;
- отсутствие слеживания и уплотнения в процессе эксплуатации;
- экологически чистый строительный материал.
Параметры теплопроводности позволяют использовать каменную вату для наружных и внутренних работ.
Стекловата
Стекловата имеет коэффициент теплопроводности выше, чем каменная вата, материал гигроскопичен
Стекловатный утеплитель изготавливается из буры, известняка, соды, просеянного доломита и песка. Для экономии на производстве применяют стеклобой, что не нарушается свойства материала. К преимуществам стекловаты относятся высокие показатели тепло- и звукоизоляции, экологическая чистота и низкая стоимость. Минусов больше:
- Гигроскопичность – впитывает воду, вследствие чего теряет утепляющие характеристики. Для предотвращения гниения и разрушения конструкции укладывают между пароизоляционными слоями.
- Неудобство монтажа – волокна с повышенной хрупкостью распадаются, могут вызывать жжение и зуд кожи.
- Непродолжительная эксплуатация – через 10 лет происходит усадка.
- Невозможность применения для утепления влажных комнат.
При работе со стекловатой нужно защищать кожу рук перчатками, лицо – очками или маской.
Вспененный полиэтилен
Вспененный фольгированный полиэтилен имеет пропускает тепло хуже, чем обычный
Рулонный полиэтилен с пористой структурой имеет дополнительный отражающий слой из фольги. Преимущества изолона и пенофола:
- маленькая толщина – от 2 до 10 мм, что в 10 раз меньше обычных изоляторов;
- возможность сохранения до 97 % полезного тепла;
- стойкость к воздействию влаги;
- минимальная теплопроводность за счет пор;
- экологическая чистота;
- отражающий эффект, за счет которого аккумулируется тепловая энергия.
Рулонная теплоизоляция подходит для укладки во влажных комнатах, на балконах и лоджиях.
Напыляемая теплоизоляция
Пенополиуретан имеет самую низкую теплопроводность
Если обратиться к таблице, то видно, что напыляемые виды заменяют 10 см минваты. Они выпускаются в баллонах, напоминают монтажную пену и наносятся при помощи специального инструмента. Напыляемый утеплитель бывает разной жесткости, в емкости также присутствуют пенообразователи – полиизоционатом и полиолом. По типу основного компонента изоляция бывает:
- ППУ. Пенополиуретан с открытой ячеистой структурой прочен, теплоэффективен. При наличии закрытых пустот в составе – может пропускать пар.
- Пеноизольная. Жидкий пенопласт на карбамидоформальдегидной основе отличается паропроницаемостью, стойкость к возгоранию. Наносится посредством заливки. Оптимальная температура затвердевания – от +15 градусов.
- Жидкая керамика. Керамические компоненты расплавляются до жидкого состояния, потом смешиваются полимерными веществами и пигментами. Получаются вакуумированные полости. Наружное утепление обеспечивает защиту здания на 10 лет, внутреннее – на 25 лет.
- Эковата. Целлюлоза измельчается до состояния пыли, приобретает клейкость при попадании воды. Материал подходит для работы на влажных стеновых поверхностях, но не используется рядом с каминными трубами, дымоходами и печами.
Напыляемые утеплители отличаются хорошей сцепкой с поверхностями, для которых применялись дерево, кирпич или газобетон.
Таблица коэффициентов теплопроводности разных материалов
На основе таблицы с коэффициентами теплопроводности строительных материалов и популярных утеплителей можно сделать сравнительный анализ. Он обеспечит подбор оптимального варианта теплоизоляции для строения.
Материал | Теплопроводность, Вт/м*К | Толщина, мм | Плотность, кг/м³ | Температура укладки, °C | Паропроницаемость, мг/м²*ч*Па |
Пенополиуретан | 0,025 | 30 | 40-60 | От -100 до +150 | 0,04-0,05 |
Экструдированный пенополистирол | 0,03 | 36 | 40-50 | От -50 до +75 | 0,015 |
Пенопласт | 0,05 | 60 | 40-125 | От -50 до +75 | 0,23 |
Минвата (плиты) | 0,047 | 56 | 35-150 | От -60 до +180 | 0,53 |
Стекловолокно (плиты) | 0,056 | 67 | 15-100 | От +60 до +480 | 0,053 |
Базальтовая вата (плиты) | 0,037 | 80 | 30-190 | От -190 до +700 | 0,3 |
Железобетон | 2,04 | 2500 | 0,03 | ||
Пустотелый кирпич | 0,058 | 50 | 1400 | 0,16 | |
Деревянные брусья с поперечным срезом | 0,18 | 15 | 40-50 | 0,06 |
Для параметров толщины применялся усредненный показатель.
Иные критерии подбора утеплителей
Теплоизоляционное покрытие обеспечивает снижение теплопотерь на 30-40 %, повышает прочность несущих конструкций из кирпича и металла, сокращает уровень шума и не забирает полезную площадь постройки. При выборе утеплителя помимо теплопроводности нужно учитывать другие критерии.
Объемный вес
Вес и плотность минваты влияет на качество утепления
Данная характеристика связана с теплопроводностью и зависит от типа материала:
- Минераловатные продукты отличаются плотностью 30-200 кг/м3, поэтому подходят для всех поверхностей строения.
- Вспененный полиэтилен имеет толщину 8-10 мм. Плотность без фольгирования равняется 25 кг/м3 с отражающей основой – около 55 кг/м3.
- Пенопласт отличается удельным весом от 80 до 160 кг/м3, а экструдированный пенополистирол – от 28 до 35 кг/м3. Последний материал является одним из самых легких.
- Полужидкий напыляемый пеноизол при плотности 10 кг/м3 требует предварительного оштукатуривания поверхности.
- Пеностекло имеет плотность, связанную со структурой. Вспененный вариант характеризуется объемным весом от 200 до 400 кг/м3. Теплоизолят из ячеистого стекла – от 100 до 200 м3, что делает возможным применение на фасадных поверхностях.
Чем меньше объемный вес, тем меньше затрачивается материала.
Способность держать форму
Плиты и пенополиуретан имеют одинаковую степень жесткости, хорошо выдерживают форму
Производители не указывают формостабильность на упаковке, но можно ориентироваться на коэффициенты Пуассона и трения, сопротивления изгибам и сжатиям. По стабильности формы судят о сминаемости или изменении параметров теплоизоляционного слоя. В случае деформации существуют риски утечки тепла на 40 % через щели и мосты холода.
Формостабильность стройматериалов зависит от типа утеплителя:
- Вата (минеральная, базальтовая, эко) при укладке между стропилами расправляется. За счет жестких волокон исключается деформация.
- Пенные виды держат форму на уровне жесткой каменной ваты.
Способность изделия держать форму также определяется по характеристикам упругости.
Паропроницаемость
Определяет «дышащие» свойства материала – способность к пропусканию воздуха и пара. Показатель важен для контроля микроклимата в помещении – в законсервированных комнатах образуется больше плесени и грибка. В условиях постоянной влажности конструкция может разрушаться.
По степени паропроницаемости выделяют два типа утеплителей:
- Пены – изделия, для производства которых применяется технология вспенивания. Продукция вообще не пропускает конденсат.
- Ваты – теплоизоляция на основе минерального или органического волокна. Материалы могут пропускать конденсат.
При монтаже паропроницаемых ват дополнительно укладывают пленочную пароизоляцию.
Горючесть
Показатель, на который ориентируются при строительстве наземных частей жилых зданий. Классификация токсичности и горючести указана в ст. 13 ФЗ № 123. В техническом регламенте выделены группы:
- НГ – негорючие: каменная и базальтовая вата.
- Г – возгораемые. Материалы категории Г1 (пенополиуретан) отличаются слабой возгораемостью, категории Г4 (пенополистирол, в т.ч. экструдированный) – сильногорючие.
- В – воспламеняемые: плиты из ДСП, рубероид.
- Д – дымообразующие (ПВХ).
- Т – токсичные (минимальный уровень – у бумаги).
Оптимальный вариант для частного строительства – самозатухающие материалы.
Звукоизоляция
Характеристика, связанная с паропроницаемостью и плотностью. Ваты исключают проникновение посторонних шумов в помещении, через пены проникает больше шума.
У плотных материалов лучше шумоизоляционные свойства, но укладка осложняется толщиной и весом. Оптимальным вариантом для самостоятельных теплоизоляционных работ будет каменная вата с высоким звукопоглощением. Аналогичные показатели – у легкой стекловаты или базальтового утеплителя со скрученными длинными тонкими волокнами.
Нормальный показатель звукоизоляции – плотность от 50 кг/м3.
Практическое применение коэффициента теплопроводности
Коэффициент теплопроводности необходим для вычисления объема утеплителя в климатическом поясе
После теоретического сравнения материалов нужно учитывать их разделение на группы теплоизоляционных и конструкционных. У конструкционного сырья – самые высокие индексы теплопередачи, поэтому оно подходит для возведения перекрытий, ограждений или стен.
Без использования сырья со свойствами утеплителей понадобится укладывать толстый слой теплоизоляции. Обратившись к таблице теплопроводности, можно определить, что низкий теплообмен конструкций из железобетона будет только при их толщине 6 м. Готовый дом будет громоздким, может просесть под почву, а затраты на строительство не окупятся и через 50 лет.
Достаточная толщина теплоизоляционного слоя – 50 см.
Применение теплоизоляционных материалов обеспечивает сокращение затрат на строительные мероприятия и снижает переплаты за энергию зимой. При покупке утеплителя нужно учитывать параметры теплопроводности, основные характеристики, стоимость и удобство самостоятельного монтажа.
таблица изоляционных материалов, коэффициент пенопласта 50 мм в сравнении по толщине, теплоизоляционные
Чтобы зимой наслаждаться теплотой и уютом в своем дома, нужно заранее позаботиться об его теплоизоляции. Сегодня сделать это совершенно несложно, ведь на строительном рынке имеется широкий ассортимент утеплителей. Каждый из них имеет свои минусы и плюсы, подходит для утепления при определенных условиях эксплуатации. При выборе материала очень важным остается такой критерий, как теплопроводность.
Содержание
- 1 Что такое теплопроводность
- 2 Пенополистирол
- 3 Экструдированный пенополистирол
- 4 Минеральная вата
- 5 Базальтовая вата
- 6 Пенофол
Что такое теплопроводность
Это процесс отдачи тепловой энергии с целью получения теплового равновесия. Температурный режим должен быть выровнен, главным остается скорость, с которой будет осуществлена эта задача. Если рассмотреть теплопроводность по отношению к дому, то чем дольше происходит процесс выравнивания температур воздуха в доме и на улице, то тем лучше. Говоря простыми словами, теплопроводность – это показатель, по которому можно понять, как быстро остывают стены в доме.
Этот критерий представлен в числовом значении и характеризуется коэффициентом тепловой проводимости. Благодаря ему можно узнать какое количество тепловой энергии за единицу времени сможет пройти через единицу поверхности. Чем выше значение теплопроводности у утеплителя, тем он быстрее проводит тепловую энергию.
На видео – виды утеплителей и их характеристики:
Чем ниже значение коэффициента проводимости тепла, тем дольше материал сможет удерживать тепло в зимние дни, а прохладу в летние. Но имеется ряд других факторов, которые также нужно принимать во внимание при выборе изолирующего материала.
Пенополистирол
Этот теплоизолятор один из самых востребованных. А связано это с его низкой проводимостью тепла, невысокой стоимостью и простотой монтажа. На полках магазинов материал представлен в плитах, толщина пенополистирола 20-150 мм. Получают путем вспенивание полистирола. Полученные ячейки заполняют воздухом. Для пенопласта характерна разная плотность, низкая проводимость тепла и стойкость к влаге.
На фото – пенополистирол
Так как пенополистирол стоит недорого, он имеет широкую популярность среди многих застройщиков для утепления различных домов и построек. Но есть у пенопласта свои недостатки. Он является очень хрупким и быстро воспламеняется, а при горении выделяет в окружающую среду вредные токсины. По этой причине применять пенопласт лучше для утепления нежилых домов и ненагружаемых конструкций. Для жилых помещений стоит обратить внимание на фольгированные утеплители для стен.
А вот какова теплопроводность пеноблоков и газоблоков, рассказывается в данной статье.
Какова теплопроводность пенобетона и газобетона, можно понять прочитав содержание статьи.
А вот какова теплопроводность газосиликатного блока, можно увидеть здесь в статье: https://resforbuild.ru/beton/bloki/gazosilikatnye/texnicheskie-xarakteristiki-2.html
А в данной статье можно посмотреть таблицу теплопроводности керамзитобетонных блоков. Для этого стоит перейти по ссылке.
Экструдированный пенополистирол
Этот материал не боится влияния влаги и гниению. Он прочный и удобный в плане монтажа. Легко поддается механической обработке. Имеет низкий уровень водоплоглощения, поэтому при повышенной влажности экструдированный пенополистирол сохраняет свои свойства. Утеплитель относится к пожаробезопасным материалам, он имеет продолжительный срок службы и простоту монтажа.
На фото – экструдированный пенополистирол
Представленные характеристики и низкая проводимость тепла позволят назвать экструдированный пенополистирол самым лучшим утеплителем для ленточных фундаментов и отмосток. При установке лист с толщиной 50 мм можно заменить пеноблок с толщиной 60 мм по проводимости тепла. При этом утеплитель не пропускает вод, так что не нужно заботиться про вспомогательную гидроизоляцию.
Минеральная вата
Минвата – это утеплитель, который можно отнести к природным и экологически чистым. Минеральная вата обладает низким коэффициентом проводимости тепла и совершенно не поддается влиянию огня. Производится утеплитель в виде плит и рулонов, каждый из которых имеет свои показатели жесткости. В статье вы можете почитать о том, чем хороша минеральная или каменная вата Технониколь.
На фото – минеральная вата
Если нужно изолировать горизонтальную поверхностность, то стоит задействовать плотные маты, а для вертикальных – жесткие и полужесткие плиты. Что касается минусов, то утеплитель минвата имеет низкую стойкость к влаге, так что при ее монтаже необходимо позаботиться про влаго-и пароизоляцию. Применять минвату не стоит для обустройства подвала, погреба, парилки в бане. Хотя если грамотно выложить гидроизоляционный слой, то минвата будет служить долго и качественно. А вот какова теплопроводность минваты, поможет понять информация из статьи.
Базальтовая вата
Этот утеплитель получают методом расплавления базальтовых горных пород с добавлением вспомогательных составляющих. В результате получается материал, имеющий волокнистую структуру и отличные водоотталкивающие свойства. Утеплитель не воспламеняется и совершенно безопасен для здоровья. Кроме этого, у базальта отличные показатели для качественной изоляции звука и тепла. Применять можно для утепления как снаружи, так и внутри дома.
На фото – базальтовая вата для утепления
При установке базальтовой ваты необходимо надевать средства защиты. Сюда относят перчатки, респиратор и очки. Это позволит защитить слизистые оболочки от попадания осколков ваты. При выборе базальтовой ваты сегодня большой популярностью пользуется марка Rockwool. В статье можно ознакомиться о том, что лучше: базальная или минеральная вата.
В ходе эксплуатации материала можно не переживать, что плиты будут уплотняться или слеживаться. А это говорит о прекрасных свойствам низкой теплопроводности, которые со временем не меняются.
Пенофол
Этот утеплитель производится в виде рулонов, толщина которых 2-10 мм. В основе материала положен вспененный полиэтилен. В продаже можно встретить теплоизолятор, на одной стороне которого имеется фольга для образования отражающего фона. Толщина материала в несколько раз меньше представленных ранее материалов, но при этом это совершенно не влияет на теплопроводность. Он способен отражать до 97% тепла. Вспененные полиэтилен может похвастаться продолжительным сроком службы и экологической чистотой.
На фото- утеплитель Пенофол:
Изолон совершенно легкий, тонкий и удобный в плане установки. Применяют рулонный теплоизолятор при обустройстве влажных комнат, куда можно отнести подвал, балкон. Кроме этого, применения утеплителя позволит сохранить полезную площадь помещения, если устанавливать его внутри дома.
А вот какова теплопроводность керамического кирпича и где такой строительный материал используется, поможет понять информация из статьи.
Так же будет интересно узнать о том, каковы характеристики и теплопроводность газобетон.
Так же будет интересно узнать о том, какова теплопроводность керамзита.
Какова теплопроводность подложки под ламинат и как правильно сделать просчёты, рассказывается в данной статье.
Таблица 1 – Показатели проводимости тепла популярных материалов
Материал | Теплопроводность, Вт/(м*С) | Плотность, кг/м3 | Паропроницаемость, мг/ (м*ч*Па) |
Пенополиуретан | 0,023 | 32 | 0,0-0,05 |
0,029 | 40 | ||
0,035 | 60 | ||
0,041 | 80 | ||
Пенополистирол | 0,038 | 40 | 0,013-0,05 |
0,041 | 100 | ||
0,05 | 150 | ||
Экструдированный пенополистирол | 0,031 | 33 | 0,013 |
Минеральная вата | 0,048 | 50 | 0,49-0,6 |
0,056 | 100 | ||
0,07 | 200 | ||
Пенопласт ПВХ | 0,052 | 125 | 0,023 |
Теплопроводность – это один из главных критериев при выборе теплоизоляционного материала. Если вести установку утеплителя с низким коэффициентом теплопроводности, то это позволит на дольше сохранить тепло в доме, создавая тем самых комфортные условия для проживания.
Понимание теплопроводности | Advanced Thermal Solutions
Теплопроводность: Мера способности материала передавать тепло. Имея две поверхности по обе стороны от материала с разницей температур между ними, теплопроводность представляет собой тепловую энергию, передаваемую в единицу времени и на единицу площади поверхности, деленную на разность температур e [1].
Теплопроводность — это объемное свойство, описывающее способность материала передавать тепло. В следующем уравнении теплопроводность представляет собой коэффициент пропорциональности к . Расстояние теплопередачи определяется как † x , что перпендикулярно площади A . Скорость передачи тепла через материал составляет Q , от температуры T 1 до температуры T 2 , когда T 1 > 5 T 6].
Теплопроводность материалов играет важную роль в охлаждении электронного оборудования. От кристалла, где вырабатывается тепло, до шкафа, в котором размещена электроника, кондуктивная теплопередача и, следовательно, теплопроводность являются неотъемлемыми компонентами общего процесса терморегулирования.
Путь тепла от кристалла во внешнюю среду — сложный процесс, который необходимо понимать при разработке теплового решения. В прошлом многие устройства могли работать без внешнего охлаждающего устройства, такого как радиатор. В этих устройствах необходимо было оптимизировать сопротивление проводимости от кристалла к плате, поскольку основной путь передачи тепла проходил через печатную плату. По мере увеличения уровня мощности передача тепла исключительно в плату становилась неадекватной (зачетная шакита). Теперь большая часть тепла рассеивается непосредственно в окружающую среду через верхнюю поверхность компонента. В этих новых более мощных устройствах важно низкое сопротивление переход-корпус, а также конструкция прикрепленного радиатора.
Чтобы определить важность теплопроводности материала в конкретном приложении управления температурой (например, радиатор), важно разделить общее тепловое сопротивление, связанное с кондуктивной теплопередачей, на три части: межфазное сопротивление, сопротивление растеканию и проводимость.
- Интерфейсный материал улучшает тепловой контакт между неидеальными сопрягаемыми поверхностями. Материал с высокой теплопроводностью и хорошей смачиваемостью поверхности уменьшит межфазное сопротивление .
- Сопротивление растеканию используется для описания теплового сопротивления, связанного с небольшим источником тепла, соединенным с большим радиатором. Среди прочих факторов теплопроводность основания радиатора напрямую влияет на сопротивление растеканию.
- Сопротивление проводимости — это мера внутреннего теплового сопротивления в радиаторе, когда тепло проходит от основания к ребрам, где оно рассеивается в окружающую среду. Что касается конструкции радиатора, сопротивление проводимости менее важно в условиях естественной конвекции и слабого воздушного потока и становится более важным по мере увеличения скорости потока.
Общепринятыми единицами теплопроводности являются Вт/мК и БТЕ/час-фут- o F.
Рисунок 2. Теплопроводность тонкой кремниевой пленки [3].
В электронной промышленности постоянное стремление к меньшим размерам и более высоким скоростям привело к значительному уменьшению размеров многих компонентов. Поскольку этот переход теперь продолжается от макро- к микромасштабу, важно учитывать влияние на теплопроводность, а не предполагать, что объемные свойства по-прежнему точны. Уравнения Фурье, основанные на континууме, не могут предсказать тепловые характеристики в этих меньших масштабах. Необходимы более полные методы, такие как уравнение переноса Больцмана и решеточный метод Больцмана [3].
Влияние толщины на проводимость можно увидеть на рис. 2. Характерным материалом является кремний, который широко используется в электронике.
Рис. 2. Теплопроводность тонкой кремниевой пленки [3]
Как и многие физические свойства, теплопроводность может быть анизотропной в зависимости от материала (зависит от направления). Кристаллический и Графит являются двумя примерами таких материалов. Графит использовался в электронной промышленности, где ценна его высокая проводимость в плоскости. Кристаллы графита обладают очень высокой плоскостной проводимостью (~ 2000 Вт/мК) из-за прочной углерод-углеродной связи в их базовой плоскости. Однако параллельные базисные плоскости слабо связаны друг с другом, а теплопроводность, перпендикулярная этим плоскостям, довольно низкая (~10 Вт/мК) [4].
На теплопроводность влияют не только изменения толщины и ориентации; температура также влияет на общую величину. Из-за повышения температуры материала увеличивается внутренняя скорость частиц и теплопроводность. Эта повышенная скорость передает тепло с меньшим сопротивлением. Закон Видемана-Франца описывает это поведение, связывая тепло- и электропроводность с температурой. Важно отметить, что влияние температуры на теплопроводность нелинейно и его трудно предсказать без предварительных исследований. На приведенных ниже графиках показано поведение теплопроводности в широком диапазоне температур. Оба этих материала, нитрид алюминия и кремний, широко используются в электронике (рис. 3 и 4 соответственно).
В будущем более мощные многоядерные процессоры будут еще больше повышать потребность в улучшении теплопроводности. Поэтому стоит также изучить другие области исследований и разработок в области повышения теплопроводности существующих материалов, используемых в электронных корпусах. Одной из таких областей является влияние нанотехнологий на теплопроводность, где углеродные нанотрубки показали значения проводимости, близкие к значениям алмаза из-за большой длины свободного пробега фононов [7]. Разработка новых материалов и усовершенствование существующих материалов приведет к более эффективному управлению температурным режимом, поскольку рассеиваемая мощность устройства неуклонно растет.
Ссылки:
1. Теплопроводность, Научный словарь американского наследия, Houghton Mifflin Company
2. Моран М. и Шапиро Х. Основы технической термодинамики, стр. 47, 1988 С., Ким В., Чанг П., Амон К., Джон М., Анизотропная теплопроводность наноразмерных ограниченных тонких пленок через решетку Больцмана, Химическая инженерия, Университет Карнеги-Меллона, ноябрь 2006 г.
4. Норли Дж., Роль природного графита в охлаждении электроники, Охлаждение электроники, август 2001 г.
5. Слэк Г.А., Танзилли Р.А., Пол Р.О., Вандерсанде Дж.В., Дж. физ. хим. Solids 48, 7 (1987), 641-647
6. Glassbrenner, C. and Slack, G., Теплопроводность кремния и германия от 3°K до точки плавления, Physical Review 134, 4A, 1964
7 Бербер С., Квон Ю. и Томанек Д. , Необычно высокая теплопроводность углеродных нанотрубок, Письма о физическом обзоре, Том 84, № 20, стр. 4613-4616, 2000
14.5 Проводимость – College Physics: OpenStax
Глава 14 Тепло и методы теплопередачи
Резюме
- Расчет теплопроводности.
- Наблюдайте за теплопроводностью при столкновениях.
- Исследование теплопроводности обычных веществ.
Рисунок 1. Изоляция используется для ограничения передачи тепла изнутри наружу (зимой) и снаружи внутрь (летом). (Фото: Джайлз Дуглас)
Ваши ноги мерзнут, когда вы идете босиком по ковру в гостиной в своем холодном доме, а затем ступаете на плиточный пол в кухне. Этот результат интригует, поскольку ковер и кафельный пол имеют одинаковую температуру. Разные ощущения объясняются разной скоростью теплопередачи: потеря тепла за один и тот же промежуток времени больше для кожи, соприкасающейся с плиткой, чем с ковром, поэтому перепад температуры на плитке больше.
Некоторые материалы проводят тепловую энергию быстрее, чем другие. В общем, хорошие проводники электричества (такие металлы, как медь, алюминий, золото и серебро) также являются хорошими проводниками тепла, тогда как изоляторы электричества (дерево, пластик и резина) плохо проводят тепло. На рис. 2 показаны молекулы в двух телах при разных температурах. (Средняя) кинетическая энергия молекулы в горячем теле выше, чем в более холодном. При столкновении двух молекул происходит передача энергии от молекулы с большей кинетической энергией к молекуле с меньшей кинетической энергией. Совокупный эффект от всех столкновений приводит к чистому потоку тепла от горячего тела к более холодному. Таким образом, тепловой поток зависит от разности температур [латекс]\boldsymbol{\Delta T = T _{\textbf{горячий}} — T _{\textbf{холодный}}}[/латекс]. Поэтому от кипятка вы получите более сильный ожог, чем от горячей водопроводной воды. И наоборот, если температуры одинаковы, чистая скорость теплопередачи падает до нуля и достигается равновесие. В связи с тем, что число соударений увеличивается с увеличением площади, теплопроводность зависит от площади поперечного сечения. Если вы коснетесь холодной стены ладонью, ваша рука остынет быстрее, чем если вы просто коснетесь ее кончиком пальца.
Рис. 2. Молекулы в двух телах при разных температурах имеют разные средние кинетические энергии. Столкновения, происходящие на поверхности контакта, имеют тенденцию передавать энергию из высокотемпературных областей в низкотемпературные области. На этом рисунке молекула в области более низких температур (правая сторона) имеет низкую энергию до столкновения, но ее энергия увеличивается после столкновения с контактной поверхностью. Напротив, молекула в области более высоких температур (левая сторона) имеет высокую энергию перед столкновением, но ее энергия уменьшается после столкновения с контактной поверхностью.
Третьим фактором механизма теплопроводности является толщина материала, через который передается тепло. На рисунке ниже показана плита материала с разными температурами с обеих сторон. Предположим, что [латекс]\boldsymbol{T_2}[/latex] больше, чем [латекс]\boldsymbol{T_1},[/latex], так что тепло передается слева направо. Перенос тепла с левой стороны на правую осуществляется серией молекулярных столкновений. Чем толще материал, тем больше времени требуется для передачи того же количества тепла. Эта модель объясняет, почему зимой толстая одежда теплее тонкой, и почему арктические млекопитающие защищаются толстым жиром.
Рисунок 3. Теплопроводность происходит через любой материал, представленный здесь прямоугольной полосой, будь то оконное стекло или жир моржа. Температура материала составляет T 2 Слева и T 1 Справа, где T 2 выше T 1 4 . Скорость теплопередачи за счет теплопроводности прямо пропорциональна площади поверхности A , разность температур T 2 − T 1 , проводимость вещества k . Скорость теплообмена обратно пропорциональна толщине d .
Наконец, скорость теплопередачи зависит от свойств материала, описываемых коэффициентом теплопроводности. Все четыре фактора включены в простое уравнение, которое было выведено и подтверждено экспериментами. скорость кондуктивной теплопередачи через пластину материала, такую как на рис. 3, определяется как
[латекс]\boldsymbol{\frac{Q}{t}}[/latex][латекс]\boldsymbol{=}[/latex][латекс]\boldsymbol{\frac{kA(T_2-T_1)}}{d }},[/латекс]
, где Q/t — скорость теплопередачи в ваттах или килокалориях в секунду,[latex]\boldsymbol{k}[/latex] — теплопроводность материала,[latex]\boldsymbol{A}[/latex] и[latex]\boldsymbol{d}[/latex]являются его площадью поверхности и толщиной, как показано на рис. 3, а[latex]\boldsymbol{(T_2-T_1)}[/latex]является разностью температур поперек плиты. . В таблице 3 приведены репрезентативные значения теплопроводности. 9{\circ}\textbf{C},\:t=1\textbf{день}=24\textbf{час}=86 400\textbf{с}}. [/latex]
[латекс]\boldsymbol{\frac{Q}{t}}[/latex][латекс]\boldsymbol{=}[/latex][латекс]\boldsymbol{\frac{kA(T_2-T_1)}}{d }}.[/латекс] 93\textbf{ Дж/кг}}}[/latex][латекс]\boldsymbol{=\:3.44\textbf{ кг}}.[/latex]
Обсуждение
Результат 3,44 кг или около 7,6 фунтов кажется правильным, исходя из опыта. Вы можете рассчитывать на то, что будете использовать около 4 кг (7–10 фунтов) мешка со льдом в день. Если вы добавляете какие-либо теплые блюда или напитки, требуется немного дополнительного льда.
Проверка электропроводности в Таблице 3 показывает, что пенополистирол является очень плохим проводником и, следовательно, хорошим изолятором. Другие хорошие изоляторы включают стекловолокно, шерсть и гусиный пух. Как и пенополистирол, все они включают в себя множество небольших воздушных карманов, использующих плохую теплопроводность воздуха.
Вещество | Теплопроводность к (Дж/с⋅м⋅ºC) |
---|---|
Серебро | 420 |
Медь | 390 |
Золото | 318 |
Алюминий | 220 |
Стальной чугун | 80 |
Сталь (нержавеющая) | 14 |
Лед | 2,2 |
Стекло (среднее) | 0,84 |
Бетонный кирпич | 0,84 |
Вода | 0,6 |
Жировая ткань (без крови) | 0,2 |
Асбест | 0,16 |
Гипсокартон | 0,16 |
Дерево | 0,08–0,16 |
Снег (сухой) | 0,10 |
Пробка | 0,042 |
Стекловата | 0,042 |
Шерсть | 0,04 |
Пуховые перья | 0,025 |
Воздух | 0,023 |
Пенополистирол | 0,010 |
Таблица 3. Теплопроводность обычных веществ 1 |
Комбинация материала и толщины часто используется для создания хороших изоляторов — чем меньше проводимость[латекс]\boldsymbol{k}[/латекс]и больше толщина[латекс]\boldsymbol{d},[/ латекс] тем лучше. Таким образом, отношение [латекс]\boldsymbol{d/k}[/латекс] будет большим для хорошего изолятора. Отношение [латекс]\boldsymbol{d/k}[/латекс] называется коэффициентом [латекс]\жирный символ{R}[/латекс]. Скорость кондуктивной теплопередачи обратно пропорциональна [латекс]\boldsymbol{R}.[/latex]Чем больше значение [латекс]\boldsymbol{R},[/латекс], тем лучше изоляция.[латекс]\ коэффициенты boldsymbol{R}[/latex] чаще всего указываются для бытовой изоляции, холодильников и т. п., к сожалению, они по-прежнему указаны в неметрических единицах фут 2 ·°F·ч/БТЕ, хотя единица измерения обычно не указывается (1 британская тепловая единица [БТЕ] — это количество энергии, необходимое для изменения температуры 1,0 фунта воды на 1,0 °F). Несколько репрезентативных значений: [латекс]\boldsymbol{R}[/latex]коэффициент 11 для стекловолоконных плит (кусков) изоляции толщиной 3,5 дюйма и [латекс]\boldsymbol{R}[/латекс]коэффициент. из 19 для войлока из стекловолокна толщиной 6,5 дюйма. Стены обычно утепляются 3,5-дюймовыми плитами, а потолки обычно изолируются 6,5-дюймовыми плитами. В холодном климате для потолков и стен можно использовать более толстые войлочные панели.
Рисунок 4. Войлок из стекловолокна используется для изоляции стен и потолков, чтобы предотвратить передачу тепла между внутренней частью здания и внешней средой.
Обратите внимание, что в Таблице 3 лучшие теплопроводники — серебро, медь, золото и алюминий — также являются лучшими электрическими проводниками, опять же в связи с плотностью свободных электронов в них. Кухонная утварь обычно изготавливается из хороших проводников.
Пример 2. Расчет разницы температур, поддерживаемой теплопередачей: проводимость через алюминиевый поддон
Вода кипит в алюминиевой кастрюле, поставленной на электрический элемент на плите. {\circ}\textbf{C}}.[/latex] 9{\circ}\textbf{C}}[/latex] из-за контакта с кипящей водой. Этот контакт эффективно охлаждает дно кастрюли, несмотря на его близость к очень горячей горелке плиты. Алюминий является настолько хорошим проводником, что только эта небольшая разница температур обеспечивает передачу тепла в поддоне мощностью 2,26 кВт.
Проводимость вызвана беспорядочным движением атомов и молекул. Таким образом, это неэффективный механизм переноса тепла на макроскопические расстояния и короткие временные расстояния. Возьмем, к примеру, температуру на Земле, которая была бы невыносимо холодной ночью и очень жаркой днем, если бы перенос тепла в атмосфере осуществлялся только за счет теплопроводности. В другом примере автомобильные двигатели перегревались бы, если бы не было более эффективного способа отвода избыточного тепла от поршней.
- Теплопроводность — это передача тепла между двумя объектами, находящимися в непосредственном контакте друг с другом.
- Скорость теплопередачи[латекс]\boldsymbol{Q/t}[/латекс](энергия в единицу времени) пропорциональна разности температур[латекс]\boldsymbol{T_2-T_1}[/латекс] и площади контакта [латекс]\boldsymbol{A}[/latex]и обратно пропорционально расстоянию[латекс]\boldsymbol{d}[/латекс]между объектами:
[латекс]\boldsymbol{\frac{Q}{t}}[/latex][латекс]\boldsymbol{=}[/latex][латекс]\boldsymbol{\frac{kA(T_2-T_1}{d}) }. {\circ}\textbf{C}},[/latex], а время контакта составляет 1,00 с. 92}?[/latex]
11: Некоторые поверхности плит выполнены из гладкой керамики, что облегчает их очистку. Если толщина керамики составляет 0,600 см, а теплопроводность происходит через ту же площадь и с той же скоростью, что и в примере 2, какова разница температур на ней? Керамика имеет такую же теплопроводность, как стекло и кирпич.
12: Одним из простых способов сократить расходы на отопление (и охлаждение) является дополнительная изоляция чердака дома. Предположим, что в доме уже есть 15 см изоляции из стекловолокна на чердаке и на всех внешних поверхностях. Если добавить на чердак дополнительные 8,0 см стекловолокна, то на сколько процентов снизится стоимость отопления дома? Возьмем одноэтажный дом размером 10 м на 15 м на 3,0 м. Не учитывать инфильтрацию воздуха и потери тепла через окна и двери. 9{\circ}\textbf{C}}.[/latex](Подсказка: существуют одинаковые перепады температуры на двух стеклянных панелях. Сначала найдите их, а затем перепад температуры на воздушном зазоре. В этой задаче игнорируется повышенная теплопередача в воздушный зазор вследствие конвекции.)
(b) Рассчитайте коэффициент теплопроводности через окно толщиной 1,60 см той же площади и при тех же температурах. Сравните свой ответ с ответом на пункт (а).
14: Многие решения принимаются на основе периода окупаемости: времени, которое потребуется за счет сбережений, чтобы сравняться с капитальными затратами инвестиций. Приемлемые сроки окупаемости зависят от бизнеса или философии человека. (Для некоторых отраслей период окупаемости составляет всего два года.) Предположим, вы хотите установить дополнительную изоляцию в упражнении 12. Если стоимость энергии составляет 1 доллар США за миллион джоулей, а изоляция — 4 доллара США за квадратный метр, рассчитайте простой срок окупаемости. . Возьмите среднее [латекс]\boldsymbol{\Delta{T}}[/latex]для 120-дневного отопительного сезона равным [латекс]\boldsymbol{15,0^{\circ}\textbf{C}}.