Утепленный фундамент: Утепленный Финский Фундамент

Утепленный фундамент: Утепленный Финский Фундамент

Содержание

Утепленный Финский Фундамент

Утепленный Финский Фундамент  

Начнем серию статей о современных фундаментах c наиболее часто применяемого нашей компанией в работе – Утепленный Финский Фундамент (УФФ). О нем и будет идти речь в этой публикации.

Корни термина и популяризации УФФ, как и ставшей очень популярной Утепленной Шведской Плиты (УШП), ведут на площадку Форум Хаус. Скромно отметим наш вклад в этот процесс, так как активное обсуждение финского фундамента начиналось на уровне самостроя с ветки форумчанина Tim1313 в 2011 году. Под данным ником скрывается один из основателей TIMATALO – Темур Чантурия. 

Отметим, что и до 2011 года в России применялись точные копии финского фундамента, что видно по тому же Форум Хаусу, но именно активное обсуждение конструктивных решений, а далее и популяризация начались в указанной ветке на Форуме.

В самом начале разберемся в терминологии, понятной в России.

  

Утепленный финский фундамент – это мелкозаглубленный «Т» — образный ленточный фундамент с полами, организованными по грунту, комплексом инженерных решений и финишной стяжкой пола. Под совокупностью инженерных решений подразумеваются такие мероприятия как: ливневая канализация и дренаж с наружной стороны фундамента, утепление, холодное горячее водоснабжение по проектным точкам, магистрали канализации, водяной теплый пол, интегрированный в стяжку пола и другие, во внутреннем периметре фундамента. Основной перечень мероприятий входящих в объем работ по финскому и шведскому фундаменту отражен в разделе услуг на нашем сайте.

По большому счету, разница нашего классического понимания ленточного фундамента с полами по грунту с УФФ именно в комплексе решений, связанных с утеплением и коммуникациями, входящими в финский фундамент, которое и обеспечивает так называемый «готовый нулевой цикл».

Цокольная часть финского фундамента представляет из себя кладку блоков, чаще всего керамзитобетонных, или изготовлена из бетона.

Преимущества Утепленного Финского Фундамента.

 

Отметим преимущества утепленного финского фундамента в контексте сравнения именно с бетонными «братьями», такими как утепленная шведская плита и классическая ЖБ плита. Рассматривать в разрезе фундаментов на основе винтовых свай, столь популярных у нас, в этот раз не станем, так как такое сравнение не будет ограничиваться только техническими показателями. Пожалуй, посвятим ему отдельную статью в будущем.

Готовый нулевой цикл, реализуемый на фундаментных работах при возведении УФФ, обеспечивает более глубокую подготовку к последующему строительству дома. По сути, на последующих этапах строительства нет необходимости тратить деньги и думать об утеплении пола в доме, о реализации финишной стяжки, отопления первого этажа и других коммуникациях на первом этаже, о скрытой ливневой канализации и утепленной отмостке дома. Все эти мероприятия реализованы на фундаментных работах.

При прочих равных, в базовом варианте высота видимой части цоколя от финишной отметки отмостки дома до фасада равна 300 – 400 мм , что все еще является комфортным для человека, так как от уровня условного нуля ландшафта до уровня пола в доме всего лишь одна или две ступеньки, но уже достаточно для большей по времени эксплуатации фасадов относительно более низких цоколей.


Объективное преимущество финского фундамента по сравнению с плитными фундаментами – это комфортность применения на участках с большими перепадами под пятном застройки именно за счет вариативности в высоте цоколя. То есть, при наличии перепада под пятном застройки, можно легко увеличить высоту фундамента за счет увеличения количества рядов кладки блоков, с базовых трех до необходимого количества, продиктованного величиной перепадов и посадкой дома на ландшафте. Или же может поступить пожелание Заказчика получить более высокий цоколь, например как и сделано на одном из наших объектов после того, как такое предпочтение было озвучено будущими жильцами.

Потенциал финского фундамента, относительно той же УШП выходит за пределы легких каркасных и брусовых домов. На финском фундаменте можно реализовывать кирпичные дома с монолитными перекрытиями на широком спектре грунтов.


При необходимости, существует возможность разнесения во времени возведения конструктивной части фундамента, на которую опираются наружные и несущие стены и полов по грунту с инженерией. Данный вариант весьма популярен в той же Финляндии и весьма удобен при производстве фундаментных работ в дождливое или холодное время года.

Есть еще один критерий о котором необходимо сказать в качестве преимущества в сравнении с плитными решениями — лучшая ремонтопригодность и даже проведение глубокой реновации. По сути, в связи с тем, что конструктивно стяжка пола не связана с силовой частью фундамента можно реализовать глубокую перепланировку дома которая влечет за собой изменения и в инженерных коммуникациях фундамента. Отметим, что данное преимущество скорее актуально после 20-30 лет эксплуатации дома, когда появляется необходимость реконструкции, например после смены собственника.

Так же есть ряд технологических преимуществ ,связанных скорее со строительными тонкостями, которые не заметит простой обывательский взгляд. Например, более качественное утепление дверных проемов, путем интеграции в цоколь утеплителей с высокими теплотехническими показателями.

 

Такие показатели, как высокая энергоэффективность, отсутствие зыбкости у полов, монтаж коммуникаций вне зоны промерзания, обеспечиваются при строительстве УШП и могут быть обеспечены при реализации классической ЖБ плиты.

На участках без больших перепадов стоимость УФФ в среднем дороже УШП на 10%. Это связанно с большей материалоемкостью и трудоемкостью возведения данного типа фундамента.

На слабонесущих основаниях, основаниях с возможной неравномерной осадкой под различными нагрузками, строительство плитных фундаментов предпочтительнее ленточных, к которым и относится УФФ.

Объективно большие вложения на фундаментных работах, именно за счет обеспечения готового нулевого цикла. Разумеется, в случае реализации простой ЖБ плиты, данные траты все равно необходимо понести, но уже на более поздних стадиях строительства. Часто, совокупные затраты на возведение простой железобетонной плиты при разделении будут больше, чем одновременные при строительстве УФФ.

Обратим внимание, что не стоит путать утепленный финский фундамент с утепленной финской плитой. Второй тип так же есть у финнов, но встречается очень редко и представляет из себя именно плитное решение. Поговорим о нем в общей статье по различным фундаментам в малоэтажном строительстве Финляндии, которая выйдет позже.

УФФ утепленный финский фундамент — что это такое, обзор технологии устройства

Главная » Как утеплить » Фундамент » УФФ утепленный финский фундамент — что это такое, обзор технологии устройства

Каркасные конструкции на малозаглубленных ленточных фундаментах (МЗЛФ) являются сегодня одним из самых перспективных направлений развития малоэтажного строительства. Значительное снижение веса одно- или двухэтажного дома позволяет применять эффективные инженерные решения, характеризующиеся небольшой трудоемкостью. Утепленный финский фундамент (УФФ) появился в отечественной практике 8 — 10 лет назад. Распространенная в скандинавских странах технология была воспринята поначалу с недоверием. Любые инновации, связанные со снижением объема работ, сталкиваются с неприятием значительной части строительного сообщества. Но за несколько лет здания, построенные с применением технологии УФФ, хорошо зарекомендовали себя в плане энергосбережения и комфорта. При этом не было замечено никаких проблем с прочностью и жесткостью несущих конструкций.

Содержание

  • 1 Что такое УФФ?
  • 2 Диапазон применения и особенности схемы
  • 3 Технология устройства УФФ
  • 4 Заключение
  • 5 Видео в тему: процесс устройства финского фундамента УФФ

Что такое УФФ?

Термин стал известным благодаря строительным форумам, но официальным не является. В соответствии с категориями СНиП речь идет о сочетании МЗЛФ и пола по грунту, при устройстве которых применена внешняя теплоизоляция.

Набирающая популярность в РФ схема фундамента от финской строительной компании Omatalo предусматривает:

  1. Мелкозаглубленный ленточный фкндамент, состоящий из бетонной подошвы сечением 600×200 и фундаментных блоков толщиной 200 мм, составляющих цоколь необходимой высоты. Обязательна тщательная трамбовка грунта обратной засыпки.
  2. Армированную цементно-песчаную стяжку толщиной 80 мм, отлитую поверх 150-миллиметрового слоя экструдированного пенополистирола (ЭППС). Перед заливкой укладывается разводка труб водяного теплого пола. Изоляционные плиты покоятся на мелкофракционном противокапиллярном щебне. Под щебнем расположена песчаная засыпка.
  3. Конструктивное разделение цоколя и плиты пола слоем ЭППС. Плита толщиной 50 — 70 мм примыкает к внутренней стороне цоколя и расположена на всю его высоту, упираясь снизу в подушку фундамента.
  4. Обустройство утепленной подмостки с помощью 120-миллиметровых плит ЭППС, установленных по внешнему периметру цоколя на глубине верха фундаментной подушки.

Принципиальная схема устройства УФФ — утеплённого финского фундамента

Застройщики варьируют эту схему, изменяя толщины слоев, теплоизоляционные материалы и некоторые другие компоненты. Например, вместо ЭППС под стяжкой могут быть установлены плиты ПСБ-С (наиболее прочные сорта пенопласта), а при устройстве теплого пола в некоторых случаях предпочтение отдается электрическим системам. В климатических зонах с индексом мороза более 70 000 цоколь предпочитают отливать в несъемную опалубку из экструдированного полистирола. Общим же для всех модификаций уфф остается соблюдение трех принципов:

  • МЗЛФ располагается в траншее с утрамбованным грунтом обратной засыпки;
  • теплоизоляционные слои расположены под стяжкой пола, а также между цоколем и стяжкой;
  • обязателен монтаж утепленной подмостки с примыканием к подошве фундаментной ленты.

В европейской и североамериканской практике эта схема не выделяется в особую категорию, но входит в группу противоморозных или утепленных МЗЛФ. В основном, встречаются два термина:

  • Frost Protected Shallow footing/foundations (FPSF) и
  • Insulated Shallow footing.

Диапазон применения и особенности схемы

Каждый проект требует индивидуального расчета фундамента в зависимости от характеристики грунта, веса дома, соотношения площади постройки к длине периметра, особенностей климатической зоны и других факторов.

Если максимально обобщать, то финский фундамент рассмотренной конструкции можно рекомендовать к применению во всех климатических зонах РФ для всех категорий грунтов при ориентировочной нагрузке 1 — 3 тонны на погонный метр МЗЛФ.

Указанный диапазон нагрузок соответствует большинству проектов каркасных домов с этажностью 1 — 2 и одноэтажных коттеджей без ограничения типа их конструкции. Впрочем, адаптация УФФ под более тяжелые дома не составляет проблемы: изменение конструкции в этом случае идет путем увеличения сечений подушки и цоколя ленточного фундамента.

Типовая конструкция МЗЛФ — мелкозаглубленного ленточного фундамента

В экономическом плане схема подходит лишь к строениям без подвалов.

Среди преимуществ УФФ можно отметить:

  • Изящное и простое решение противоморозной защиты
  • Высокие показатели энергоэффективности, лишь незначительно уступающие схеме типа утепленной шведской плиты (УШП).
  • Хорошая адаптационная способность к изменениям проектов по нагрузкам, высоте цоколя, последовательности выполнения отдельных этапов, ремонтопригодности проложенных коммуникаций.
  • Возможности вести работы малыми силами и небольшими средствами, делая значительные перерывы по времени (например, можно обойтись без опалубки, а заниматься разводкой отопления и отливать плиту пола допустимо уже после монтажа крыши).
  • Вариант лучше, чем УШП адаптируется к уклонам участка.
  • Схему допустимо применять при высоком уровне грунтовых вод

[blockquote_gray»]Особенности технологии устройства УШП и отличия от УФФ, узнайте в этом подробном материале по ссылке[/blockquote_gray]

Недостатки (во многом, условные) фундамента данного типа связаны с недостаточной энергоэффективностью применительно к концепции «пассивного дома» и значительным объемом земляных работ. Стоимость цикла при реализации схем, близких к технологии Omatalo, составляет 100 — 120 $/м² плана постройки.

Вариант по цене дороже стандартного нулевого цикла. Однако, если учитывать утепление и разводку коммуникаций, финская схема выходит немного дешевле.

Технико-экономическое сравнение с УШП дает следующие результаты: при высоте цоколя 80 см и выше вариант дороже утепленной шведской плиты на 10% — 15%. Высота цоколя значительно влияет на расходы, так как прямо пропорционально связана с объемами доставляемых на объект засыпных материалов.

Следует отметить, что замена экструдированного пенополистирола пенопластом (при сохранении толщины теплоизолирующего слоя) не дает ощутимого удешевления проекта (итоговая сумма снижается не более, чем на 2% — 3%). Если же исходить из одинакового уровня энергоэффективности, учитывающего влагопоглощение, то утепление пола плитами ПСБ-С обходится дороже, чем с помощью ЭППС.

Технология устройства УФФ

Рассмотрим пошагово комплекс работ, исходя из оптимизации (уменьшения) времени на их выполнение.

  1. Выполняется определение места постройки на участке (если это не было определено индивидуальным проектом дома). Учитываются все естественные преграды, наружные коммуникации, границы участка, подъездные пути и проч.
  2. Разметка котлована обносками (колышками с прикрепленными на них планками) производится с учетом запаса (0,3 — 0,5 м) относительно наружного периметра утепляемой отмостки.
  3. Полностью удаляется плодородный слой.
  4. Под несущими стенами роется траншея согласно глубине залегания подушки и необходимой высоте слоя подсыпки.

    Плодородный слой снимается и в траншею под несущие стены укладывается песок и щебень слоями по 20 см

  5. Вынутые пучинистые грунты вывозятся со стройплощадки, если иное не предусмотрено планами по ландшафтному дизайну.
  6. Создается дренажный уклон, выполняется дренажная засыпка на геотекстиль и уплотняется виброплитой.
  7. Под подушку ленты выкладывается рулонная гидроизоляция в 2 — 3 слоя с запасом, позволяющим загнуть материал до примыкания к боковым поверхностям цоколя. Гидроизоляцию наружной поверхности цоколя можно провести позднее (если она необходима). Затем выполняется утепление подушки плитным материалом (если предусмотрено проектом).
  8. Выполняется армирование подушки. Используется арматура периодического сечения диаметром 8 — 14 мм. При толщине подушки не более 25 см, как правило, обходятся двумя поясами армирования. Если иное необходимо по расчету, либо толщина достигает 30 см, выполняется третий пояс армирования. Пояса связываются вертикальными перемычками. Нижний пояс укладывается на полимерные или бетонные подкладки.
  9. Монтируется опалубка и производится заливка бетона. Демонтаж опалубки производится после 50%-ного набора прочности (в зависимости от погодных условий и марки бетона период составляет 2 — 7 дней).

    Опалубка и гидроизоляция утеплённого финского фундамента. Хорошо видно армирование и гидроизоляция.

  10. Выкладывается лента из фундаментных блоков.
  11. Внутренняя поверхность ленты утепляется плитами ЭППС или ПСБ-С. Утепление подмостки и ее засыпку не обязательно координировать по времени с другими видами работ.

    Выполнена обратная засыпка. Вдоль внутренней поверхности ленты хорошо виден установленный предварительно утеплитель. Как вариант, часто используют пенопласт.

  12. После утепления ленты производится засыпка внутренней части. Используется песок и мелкофракционный щебень. Каждые 10 см высоты производится уплотнение виброплитой. Для исключения перемешивания разнородных слой используется геотекстиль.
  13. Выкладывается утепление пола. Если предусмотрено проектом, поверх плит укладывается фольгированный утеплитель.
  14. Производится монтаж труб водяного теплого пола, либо электрических кабельных матов. Осуществляется установка закладных для всех предусмотренных коммуникаций.

    Смонтированная система утеплённого пола в конструкции УФФ

  15. Заливка стяжки реализуется с использованием металлической сетки в соответствии со всеми стандартами работ такого типа.

    Поверхность УФФ плиты после заливки бетоном

Заключение


Самым впечатляющим результатом устройства фундамента с теплоизоляцией по данной схеме можно считать двойную выгоду от выполнения одной манипуляции. А именно: утепляющий слой, с одной стороны, является преградой на пути тепла из помещения в землю, с другой — аккумулирует восходящее от недр геотермальное тепло, предохраняя бетон и грунт от промерзания.

Вторым важным бонусом технологии является сравнительная простота и известность всех приемов работы для подавляющего большинства отечественных строительных бригад.

Видео в тему: процесс устройства финского фундамента УФФ

Система утепленного фундамента KORE — Изоляция KORE

Устраните тепловые мосты , обернув весь фундамент сплошным слоем пенополистирола.

Наслаждайтесь полностью спроектированной системой , обеспечивающей коэффициент теплопередачи всего 0,10 Вт/м2K

Переход от облицовочного слоя к бетону всего за два дня* . Идеально подходит для крупномасштабных разработок, сокращая время установки и повышая эффективность на месте.

Сборка с единственной сертифицированной NSAI Foundation System доступно в Ирландии

U-значения:

Периметр/площадь (м2)

Значение U (Вт/мк2)

 

  • Меньше забот о состоянии грунта

    Полностью спроектирован для соответствия грунтовым условиям на любом участке.

  • Выберите свой тип конструкции

    Подходит практически для всех типов строительства, включая ICF, стальной каркас, традиционные блочные и деревянные каркасные дома.

  • Сократите свои расходы

    Требуется до 50 % меньше бетона, что снижает затраты как на материалы, так и на рабочую силу.

  • Сделайте систему обогрева пола умнее, а не сложнее

    Удержание тепла более чем в 3 раза выше и потребление энергии на 13 % меньше по сравнению с традиционным слоем стяжки в типичном фундаменте.

Первая в Ирландии сертифицированная система утепленного фундамента

  • Сертификация NSAI — Сертификат Совета по соглашению Ирландии № 20/0424
  • Изготовлено по заказу И.С. EN 13163:2012+A2:2016 от производителя, сертифицированного по ISO 9001:2015 QMS
  • Подпись квалифицированного инженера-строителя на каждом объекте

Переверните изображение выше, чтобы увидеть различные компоненты системы утепленного фундамента KORE

Утепленная фундаментная система состоит из трех компонентов пенополистирола: KORE Floor EPS100 White, EPS200 White и EPS300 White, обеспечивающих эффективный изоляционный слой для снижения потерь тепла через бетонные нижние этажи. Сверху заливают монолитную бетонную плиту. 9№ 0005

Для формирования периметра фундамента профилированные кольцевые балки из пенополистирола EPS300 укладываются на облицовочный слой в точных положениях и скрепляются друг с другом с помощью U-образных штифтов или полиуретанового клея. Листы EPS300 располагаются под внутренними несущими и/или боковыми стенами. Листы EPS100 размещаются внутри периметра и укладываются вплотную встык. Дополнительные слои укладываются внахлест и плотно прилегают по краям и вокруг любых сервисных проходов.

Радон/DPM укладывается между или под слоями пенополистирола, с проклеенными стыками для предотвращения проникновения грунтовой влаги. Арматура устанавливается по чертежам и графикам инженера-проектировщика.

Устранение мостика холода между стенами и полом

Система изолированного фундамента KORE практически устраняет критические мостики холода между стенами и полом. EPS используется для покрытия соединения непрерывным слоем изоляции, гарантируя устранение теплового моста между стеной и полом и отсутствие разрыва изоляции между неизолирующими материалами.

Сокращение потребности в бетоне

Система изолированного фундамента KORE снижает количество бетона, необходимого для фундамента, на 50–60 %. Это снижает ваши затраты как на материалы, так и на рабочую силу, делая изолированный фундамент экономически эффективным решением для вашей следующей постройки.

Идеально подходит для крупномасштабных проектов

Система утепленных фундаментов KORE является идеальным решением для крупномасштабных проектов. Эта инновационная технология позволяет строителям и разработчикам переходить от облицовочного слоя к бетону всего за два дня, сокращая время, трудозатраты и затраты, обычно связанные с традиционными фундаментами.

Обеспечивает очень низкие значения коэффициента теплопередачи.

Система изолированного фундамента KORE может обеспечить значения коэффициента теплопередачи, намного более низкие, чем те, которые требуются в части L 2021 и nZEB. Типичные значения коэффициента теплопередачи, обеспечиваемые системой фундамента, варьируются от 0,10 Вт/м2К до 0,11Вт/м2К в зависимости от спецификаций проекта. Наш технический отдел может предоставить расчет коэффициента теплопередачи в рамках процесса коммерческого предложения.

Подходит для большинства грунтовых условий

Система изолированного фундамента KORE подходит для широкого спектра грунтовых условий и специально разработана для удовлетворения требований площадки. Фундаментную систему можно использовать в условиях мягкого грунта, поскольку система позволяет переносить вес конструкции на всю плиту.

Исключительная прочность на сжатие

Система утепленных фундаментов KORE работает почти так же, как традиционный плотный фундамент. Элемент EPS специально разработан и обрезан в соответствии с типом здания для установки. Исключительная прочность основания на сжатие делает продукт пригодным как для бытового, так и для коммерческого применения.

Большие внутренние нагрузки можно легко выдержать на теплоизолированном фундаменте за счет утолщения плиты до 100 мм и установки EPS300 под утолщенной плитой.

Подходит для различных типов конструкций

Система утепленных фундаментов KORE подходит для большинства типов конструкций. Это включает в себя утепленную бетонную опалубку (ICF), стальной каркас, традиционные блочные и каркасные дома. Изолированный фундамент KORE также можно использовать при сборке за пределами площадки. Для получения дополнительной информации обратитесь к представителю отдела продаж или технического отдела.

В комплекте с экологической декларацией продукта

Компания KORE EPS получила проверенную третьей стороной экологическую декларацию продукта от EPD Ireland и Ирландского совета по экологическому строительству. Этот анализ жизненного цикла можно использовать для достижения стандартов зданий с низким энергопотреблением, таких как LEED, BREEAM и Home Performance Index (HPI).

10 февраля 2020 г.

Удостоенный наград пример использования дома Steep Wedge House

03 декабря 2018 г.

Glavoc Rapid Build System, Co. Дублин Пример из практики

26 ноября 2018 г.

Silken Park Development, Citywest, Дублин Пример из практики

Прочный, хорошо изолированный фундамент — Хорошее жилищное строительство

Каждый дом должен быть построен на прочном фундаменте, и дом FHB не является исключением. На самом деле, как и другие элементы проекта, мы хотели, чтобы фундамент продемонстрировал лучшие практики и работал как часть системы для этого дома, ориентированного на производительность.

МКФ отвечает всем требованиям

Наклонный участок предположил, что у нас будет выходной подвал, что, по моему опыту, обычно означает залитые бетонные стены на фундаментах с уступом, чтобы оставаться ниже линии промерзания, с жесткой изоляцией на внутренней стороне или внешний вид стен, чтобы соответствовать или превосходить требования нормативов в холодных климатических зонах. Обычно бетон выдерживается относительно близко к классу, а остальные стены строятся с каркасными стенами.

 

Для FHB House мы используем проверенную и надежную систему, но новую для меня: ICF — изолированные бетонные формы. В то время как залитые фундаменты, обычно толщиной 8 дюймов, но иногда больше (а иногда и меньше), требуют дополнительных усилий для изоляции и склонны к растрескиванию, когда опалубка снимается до того, как вода в бетонной смеси успеет полностью гидратировать химическую реакцию, ICF обеспечивают встроенная пенная изоляция и позволяют бетону затвердевать в течение длительного периода, удерживая влагу — большой плюс в моей книге по бетону. Самое главное, это система, которую Майк Гертин может установить самостоятельно, что обеспечивает гибкость в графике и сводит его расходы на субподрядчиков к минимуму. Ему не нужно покупать, хранить и использовать фанерные или алюминиевые формы; по большей части ему просто нужно складывать ICF, как большие блоки Lego, а затем заполнять формы бетонным грузовиком. Мы используем линейку продуктов Amvic+ 3.30 от Amvic.

Начните с прочного основания

Хороший фундамент должен лежать на хорошем основании. Согласно IRC 2012, который является основой для строительных норм и правил Род-Айленда:

«Фундаменты должны опираться на ненарушенные естественные почвы или искусственную насыпь».

Поверх подложки находится основание, размеры которого могут варьироваться в зависимости от ситуации. Основная причина использования фундамента состоит в том, чтобы распределять статические и динамические нагрузки на здание, но фундамент также создает плоскую ровную поверхность, на которой размещаются стеновые опалубки, и, будучи привязанным к стене стальной арматурой, фундамент также может сопротивляться восходящие нагрузки, которые могут быть возложены на высокие узкие здания, когда сильный ветер или сейсмические нагрузки пытаются их опрокинуть. Размер фундамента зависит от строительных нагрузок и несущей способности грунта и часто строится больше, чем требуют нагрузки и правила.

Фундаменты часто изображают, а иногда и строят со шпоночными канавками, которые представляют собой траншеи, проложенные в фундаменте для «шпонирования» стен после их заливки. Они предназначены для предотвращения бокового смещения, но даже при надавливании грунта снаружи, плитном перекрытии внутри и с арматурой, перекрывающей холодный шов (где бетон заливается на уже затвердевший бетон), обычно не требуется ключевой паз.

Там есть необходимость в капиллярном разрыве, одной из тех деталей, которые некоторые строители до сих пор не внедряют, потому что преимущества трудно заметить. В герметичном доме, когда пористый бетон позволяет впитывать воду из почвы, возникают проблемы, связанные с влажностью, которых можно было бы легко избежать, добавив капиллярный разрыв. Есть несколько продуктов, предназначенных для капиллярного разрыва между фундаментом и стеной наверху, чтобы уменьшить или исключить перемещение влаги из земли в стену. Фундаменты иногда включают арматуру, но часто нет, по той простой причине, что стена наверху функционирует как гигантская балка (особенно если она включает горизонтальную арматуру), поэтому дополнительное армирование, которое обеспечивает арматура в фундаменте, просто не требуется.

 

Гибридный подход к фундаменту

Один из уникальных подходов к дому FHB находится в выходной части подвала, где из-за высокого уровня грунтовых вод было бы трудно добраться до код- требуется минимум 40 дюймов от уровня земли до низа фундамента. Майк Гертин предложил использовать в этом месте детали мелкозаглубленного фундамента с защитой от мороза. И у Майка, и у меня есть опыт строительства неглубоких фундаментов с защитой от промерзания, которые включают жесткую пену для улавливания тепла земли и защиты холодного воздуха от замерзания грунта под фундаментом, построенным выше линии промерзания. Однако с этим подходом было две проблемы: строительные нормы и правила Род-Айленда ограничивают высоту зданий на защищенных от мороза мелкозаглубленных фундаментах высотой в один этаж, а также включают ограничения на комбинирование защищенных от мороза мелкозаглубленных фундаментов с другими системами фундаментов. К счастью, Майк Гертин находится в хороших отношениях со своим местным сотрудником по обеспечению соблюдения кодекса, который может по своему усмотрению отменять кодекс, когда это необходимо. После разговора с нашим инженером, Дэвидом Маколини из Becker Structural Engineers, и с Майком Гертином официальный представитель разрешил нашу гибридную систему. По словам Майка, в июле в Род-Айленде будет выпущен обновленный кодекс, который предписывает создание такого фонда, как наш.

ICF: автономные формы

Выбранные нами блоки торговой марки Amvic обладают самой высокой изоляционной способностью в отрасли. Каждая сторона формы имеет 3 ¼ дюйма пены по R-13,67 на сторону; после добавления других компонентов типичной стены вся стена оценивается в R-30, что превышает норму и примерно такое же, как у наших каркасных стен выше. (Нормы требуют непрерывной изоляции R-15 (или изоляции полостей R-19) для стен подвала и R-20 для каркасных стен в климатической зоне Род-Айленда, 5.) Блоки изготовлены из EPS (пенополистирола), который имеет самый безвредный для окружающей среды вспениватель из всех жестких пенопластов, а значение теплопроводности остается постоянным с течением времени.

Previous PostNextNext Post

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *