Утеплитель строительный: купить утеплитель в Москве по оптимальной цене

Утеплитель строительный: купить утеплитель в Москве по оптимальной цене

Содержание

​Стены, за которыми тепло. Практические советы, как выбрать утеплитель для стен

 

Использование теплоизоляционных решений в строительстве жилых домов помогает сохранить тепло и комфорт, сэкономить электроэнергию, увеличивает срок службы самого дома. Создание качественных условий для жилья во многом зависит от утеплителя, которым проводится изоляция стены.

Сегодня рынок предлагает разнообразные продукты и технологии утепления – для деревянныхкирпичных, каркасных домов, для изоляции снаружи и изнутри. Как выбрать подходящий материал – читайте в нашем обзоре.

Для чего нужно утепление стен:

  • Решение проблемы теплопотерь в доме

Сегодня большинство жилых построек в России относятся к категории D, то есть недостаточно эффективных с точки зрения энергопотребления. Однако, за счет качественных теплоизоляционных решений возможно повысить категорию дома до В и даже до А+. Правильное утепление снизит теплопотери здания, а герметичная изоляция утеплителем позволит значительно уменьшить расход на обогрев дома.

«Погода в доме» будет зависит от толщины слоя защитного материала для стены и от его свойств, которые можно просчитать заранее: сравнить эффективность разных теплоизоляционных решений и наглядно убедиться, насколько сократятся теплопотери в каждом конкретном случае. Для этого используются калькуляторы энергоэффективности.
 

Онлайн-калькулятор для расчета теплоизоляции ISOVER помогает подобрать правильный утеплитель в соответствии с типом конструкции стеновой панели, узнать, насколько повысится энергоэффективность жилья, а также позволяет приобрести необходимый продукт. Чтобы рассчитать, что нужно в каждом конкретном случае для теплоизоляции дома, квартиры, балкона или любого жилого помещения проводятся следующие расчеты:
1. Толщина слоя утеплителя во многом зависит от климатической зоны. Каждому региону соответствуют свои нормативы по теплоизоляции. Поэтому сразу задается локация. Например, Москва.
2. Далее идет выбор типа и параметров объекта. Например, дом. Потребуется задать его размеры и выбрать, какие поверхности нуждаются в утеплении (стены, крыша, перекрытия). Калькулятор рассчитает объем необходимого материала, а также предложит оптимальный продукт из всей линейки минеральной ваты ISOVER;
3. Затем можно задать желаемую температуру воздуха в помещении. Исходя из этого будет определен класс энергоэффективности, и показано, на сколько он повысится после утепления минеральной ватой. Здесь же будет проведен финальный расчет — количество упаковок, итоговая цена, габариты для транспортировки. И предложены варианты — покупка онлайн или через региональных дистрибьюторов.
 

  • Поддержание комфортного температурного режима

Основная функция утеплителя для стены – обеспечить в здании комфортную температуру воздуха. Жилой дом в разных помещениях, в зависимости от их назначения, должен поддерживать тепло от 18 до 25 °С. Этого можно добиться благодаря качественному утеплению, а результат зависит от характеристик утеплителя. Правильно сделанная теплоизоляция периметра дома и перекрытий внутри него позволяет избежать теплопотерь и сохранить внутри воздух оптимальной температуры. Материал, которым утепляют здание, должен отвечать актуальным требованиям и нормативам по теплопроводности и безопасности. Рассчитать обеспечивают ли внешние перегородки вашего дома необходимую теплозащиту можно на калькуляторе энергоэффективности.

Выбор утеплителя для стен по функциональному назначению.

  • Теплоизоляция изнутри дома.

Утеплители для стен монтируют как снаружи, так и изнутри здания. Качественную теплоизоляцию можно провести в обоих случаях, однако специалисты рекомендуют отдавать предпочтение внешнему варианту утепления. При внутреннем расположении теплоизоляции, в период отрицательных температур промерзает и внешняя ограждающая конструкция, и частично сам утепляющий материал. Кроме того, возникают условия для образования конденсата на границе между теплоизоляцией и несущей стеной. Возникают трудности при изоляции стыков между перекрытиями и внешними ограждающими конструкциями – в местах сочленений образуются «мостики холода». Если, по каким-то причинам, дом возможно утеплить только  изнутри, надо обязательно рассчитать годовой баланс влагонакопления. А также предусмотреть эффективную вентиляцию в помещениях и дополнительную пароизоляцию между гипсовой строительной плитой и утеплителем.

  • Теплоизоляция снаружи дома.

Когда монтаж утеплителя идет со стороны улицы, температурные изменения в стене происходят медленно и постепенно, а самая холодная точка располагается во внешних слоях наружной теплоизоляции. В таком стеновом сэндвиче жесткие и плотные слои обращены внутрь, а мягкие пористые – наружу. Это улучшает конвекцию и естественный парообмен, не позволяя накапливать влагу в толще стен. Дополнительно можно утеплить фасад с мембраной от дождя и снега, тогда благодаря защите утеплителя материалом с гидрофобными свойствами, вся конструкция будет сохранять свои характеристики еще лучше. Метод наружной облицовки теплоизоляционным материалом или, другими словами, утепление дома по фасадам – это оптимальный выбор для жилых сооружений.
 

Современные утеплители для стен

Сегодня на рынке теплоизоляционного материала две трети всего объема продаж занимают продукты на основе минеральной ваты. Она заслуженно относится к разряду самых популярных и эффективных вариантов утеплителя. Имеет хорошие теплоизоляционные свойства, не горит, удобна для монтажа, экономична, безопасна для здоровья человека и окружающей среды. Минеральную вату изготавливают из натурального неорганического минерального сырья – кварца или базальта. Оба варианта утеплителей домашних стен успешно применяются при строительных работах.

Выбор утеплителя для стен по происхождению сырья

ISOVER – единственный производитель в России, выпускающий оба вида утеплителя.

Утеплитель для стен на основе кварца входит в число самых современных и качественных теплоизоляционных материалов. На заводах ISOVER его делают из кварцевого расплава с использованием крипмлинга – гофрирования структуры — в результате получается продукция с повышенными характеристиками прочности. А инновационная технология TEL позволят получать длинные и особо упругие волокна, которые в процессе производства укладываются в плиты и рулоны в хаотичном порядке. В результате материал для стен из кварца получается особо легким, лучше других выполняет функции тепло- и звукоизоляции и на сегодняшний день успешно применяется как в профессиональном, так и в частном строительстве.

Базальтовая вата — классическое решение для теплоизоляции. Ее изготавливают из горной породы – базальта – при температуре 1500 °С. Это надежный и долговечный материал для стен, кровли и технических коммуникаций, его используют уже не первое десятилетие. Для стены утеплитель из базальта выполняет роль тепло- и звукозащиты, а повышенная пожаробезопасность делает каменную вату востребованной во всех сегментах строительства – от жилого до офисного и промышленного. С утеплителем на основе базальта просто работать, а здания в которых применяется базальтовая вата безопасны и эффективны в эксплуатации.

Выбор утеплителя для стен по типу упаковки

Форма упаковки материала, которым утепляют здание, также имеет значение. Например, в ассортименте ведущего производителя минеральных ват ISOVER представлены рулоны и плиты. Каждый стеновой утеплитель имеет свои преимущества и выбор конкретного материала зависит от типа строительства, особенностей здания и условий монтажа.

Утеплитель для стен в виде рулонов дает широкие возможности для применения во время строительных работ. Длинные рулоны утеплителя можно нарезать под размер любого шага обрешетки – упругое полотно не осыпается и не крошится. Рулоны удобно раскатывать на горизонтальных поверхностях, поэтому такую минеральную вату на основе кварца часто применяют для утепления кровельных конструкций и фасадов больших зданий. Теплоизоляция стен с помощью минеральной ваты в рулонах способствует герметичному монтажу и хорошо подходит для утепления стыков. Она полотно перекрывает зазоры, не образуя «мостиков холода».

 

Плиты из минеральной ваты на основе кварца – это самый простой удобный вариант утепления стен дома. В этом случае работы выполняются с помощью небольших теплоизоляционных плит, полностью готовых укладке. Плиты материала из минеральной ваты делаются по стандартным размерам под обрешетку из деревянных балок с шагом 600 мм. Упругий материал позволяет им вставать враспор, исключая зазоры, и не требует дополнительной фиксации креплениями на монтаже. Укладку таких плит можно проводить в одиночку.
 

Характеристики и свойства, на которые нужно обратить внимание при выборе утеплителя для стен.

Коэффициент теплопроводности

Главная функциональная характеристика утеплителя называется теплопроводностью. Это способность передавать энергию от более теплых тел к менее теплым, а также один из важнейших параметров при расчете на калькуляторе. Чем ниже у материала этот коэффициент, тем более надежную изоляцию от внешних температур он может обеспечить. Например, у слоя качественной минеральной ваты на основе кварца, даже небольшой толщины, защита от холода лучше, чем у массивных кирпичных или деревянных стен, а ее теплопроводность находится в пределах 0,038-0,034 Вт/(м*К)

Устойчивость к возгоранию

Пожарная безопасность является приоритетом при строительстве и ремонте в жилых помещениях. Изоляционный материал, по степени горючести, может иметь категорию от Г1 до Г4 – то есть от сильной степени защиты до сравнительно слабой, или быть негорючим, тогда он имеет маркировку НГ. Здесь оценивается способность утеплителя к возгоранию, распространению огня и дыма, образованию летучих частиц. Так, весь минеральный утеплитель на основе кварца ISOVER относится к высшей категории — НГ. Плиты или рулоны теплоизоляционного слоя являются полностью негорючими и позволяют минимизировать риски и разрушительные последствия при пожаре.

Экологичность

Материал, который используют при утеплении стен в жилых помещениях должен быть безопасен для здоровья людей и безвреден для окружающей среды. Этот важный параметр утеплителя называется экологичностью. Природное происхождение делает их продуктами первого выбора с точки зрения экологии и благополучия человека.

Звуко- и пароизоляция

Некоторые виды теплоизоляции обладают также свойствами звукоизоляционного барьера. Например, утеплитель стен из минеральной ваты, благодаря мягкости своего материала, поглощает внешний шум. Степень защиты здесь находится в прямой зависимости от толщины звукоизоляционного слоя. Еще одно важное свойство, которым должен обладать утеплитель — это паропроницаемость, особенно для деревянных конструкций. Теплоизоляционная прослойка должна иметь меньший коэффициент паропроницаемости, чем у стены. Тогда воздухообмен в доме будет нормальным. Этим требованиям полностью отвечают продукты из минеральной ваты на основе кварца, но даже в этом случае рекомендуется дополнительная пароизоляция изнутри помещения.

Преимущества минеральной ваты на основе кварца для утепления стен.

  • Комфортная температура

Преимуществом минерального утеплителя на основе кварца является его низкая теплопроводность. Благодаря этому в жилых помещениях создается надежная изоляция от внешней температуры. Минеральные ваты ISOVER на основе кварца относятся к группе самых эффективных теплоизоляционных решений. С помощью продуктов из этого материала можно устранить такие проблемы как промерзания в стене, «мостики холода», нерациональный обогрев дома и, в некоторых случаях, сократить энергопотребление в 3 раза!

  • Влагостойкость

Для того чтобы слой утеплителя хорошо выполнял свои функции, он должен быть сухим в любую погоду. Теплоизоляция стен, которая накапливает влагу или конденсат, быстро промерзает и не держит тепло. Чтобы избежать этой ситуации для утепления выбирают гидрофобные продукты, например, минеральную вату ISOVER на основе кварца. Этот материал не поглощает и не впитывает воду. Таким образом всей конструкции обеспечивается дополнительная гидроизоляция.

Благодаря инновационным технологиям производства – гофрированию структуры и создания длинных гибких волокон — минеральная вата ISOVER на основе кварца отличаются особой упругостью. Для утепления стен с ее помощью не нужны дополнительные крепежи. Плиты утеплителя удобно монтировать – они встают в обрешетку, не сползают в каркасе между балками и не меняют положения весь гарантийной срок службы материала – 50 лет.

  • Формостабильность

Плиты утеплителя ISOVER на основе кварца сохраняют свою форму, геометрические размеры и очертания на весь срок эксплуатации. Изоляция помещений от холода и нежелательного шума, выполненная с применением этого материала очень долговечна. Она не теряет своих свойств и характеристик: не мнется, не крошится и не осыпается, держит тепло и не впитывает влагу. При качественном утеплении стен с применением минеральной ваты из кварца полностью исключаются зазоры и в обрешетке и «мостики холода».

  • Удобство монтажа

Утеплитель ISOVER на основе кварца максимально приспособлен к монтажу человеком без специальной подготовки и «прощает» погрешности на площадке. Плиты утеплителя – легкие, удобные для обхвата. Укладку материала в обрешетку стен можно провести самостоятельно. При этом продуманная система упаковок позволяет экономить на транспортировке и хранении – дизайн пачек разработан с таким расчетом, чтобы их можно было перевозить на личном автомобиле и разгружать без посторонней помощи.

  • Экологичность

Материал стеновой панели для установки в жилых помещениях должен отвечать всем нормативам и требованиям к чистоте и безопасности. Выбирая минеральную вату на основе кварца ISOVER, потребитель получает не только качественную теплоизоляцию, но и продукты с наивысшим уровнем экологичности. Плитам и рулонным матам утеплителя присвоен статус Eco Material Absolute Plus – это максимально высокая оценка по всем направлениям — продукты, экологически чистые и абсолютно безвредные для людей, а также для окружающей среды. Теплоизоляционные изделия ISOVER используют в детских учреждениях, в больницах, в «зеленых» жилых домах.
 

Для утепления стен выбирайте специальные материалы ISOVER на основе кварца.

Минеральный утеплитель на основе кварца может обладать особой прочностью и плотностью. Например, ISOVER Теплые Стены Стронг. Его плиты имеют повышенную жесткость для большей устойчивости в конструкции и для стабилизации нагрузок. Другие свойства материала также выделяют его в ряду конкурентов, в том числе и среди продуктов на основе минеральной ваты:

  • Благодаря утеплителю существенно экономится время монтажа. Он продается готовым к установке в обрешетку, а в самом процессе укладки не меняет свое положение, не съезжает и не ломается. Крепится враспор за счет упругости и не требует дополнительных креплений.
  • Удобен в работе – «прощает» ошибки монтажа, подстраивается под неровности конструкции, помогая исключить щели и зазоры на стыках с каркасом, не крошится и не пылит. Плиты имеют 1 метр в длину, что дает возможность для работы с ними в одиночку.
  • Этот продукт для стеновой теплоизоляции имеет рекордный коэффициент теплопроводности — 0,034 Вт/(м*К) – более низкий, чем у большинства других изделий из минеральной ваты. Такая теплопроводность позволяет делать качественную теплоизоляцию в один-два слоя.
  • Продукт ISOVER Теплые Стены Стронг легко транспортировать своими силами и существенно экономить на доставке и хранении. Вес упаковки очень небольшой – менее 6 кг для 5-ти плит, а габариты – всего 0.3 м3.

Материал выпускается в различных толщинах:​*/
]]>

Толщина, мм 50 мм 100 мм
Ширина, мм 610 мм 610 мм
Длина, мм 1000 мм 1000 мм
Количество в упаковке, м2 6,1 м2 3,05 м2
Количество в упаковке, м3 0,305 м3 0,305 м3
Количество в упаковке, шт 10 шт. 5 шт.

Продукт доступен для регионов ЦФО и Северо-Запад.  

Смотреть все характеристики и цену утеплителя>>>

Смотрите видеорепортаж о том, как производятся материалы ISOVER

Страница не найдена — DomSdelat.ru


Материалы


891.


Особенности применения гидроизоляции GLIMS ГидроПломба В последние несколько лет все больше обозначается тенденция покупки


Внутренняя отделка


909.


Как правильно и на что клеить гипсокартон: рекомендации мастеров Среди множества современных строительных материалов,


Материалы


887.


Обмазочная цементная гидроизоляция Bergauf Hydrostop Цементная гидроизоляция для обмазки – очень важный строительный компонент.


Интерьер


849.


Дизайн коврового покрытия для дома и квартиры: как правильно выбрать Во многих российских квартирах

Страница не найдена — DomSdelat.ru


Материалы


891.


Особенности применения гидроизоляции GLIMS ГидроПломба В последние несколько лет все больше обозначается тенденция покупки


Внутренняя отделка


909.


Как правильно и на что клеить гипсокартон: рекомендации мастеров Среди множества современных строительных материалов,


Материалы


887.


Обмазочная цементная гидроизоляция Bergauf Hydrostop Цементная гидроизоляция для обмазки – очень важный строительный компонент.


Интерьер


849.


Дизайн коврового покрытия для дома и квартиры: как правильно выбрать Во многих российских квартирах

Страница не найдена — DomSdelat.ru


Материалы


891.


Особенности применения гидроизоляции GLIMS ГидроПломба В последние несколько лет все больше обозначается тенденция покупки


Внутренняя отделка


909.


Как правильно и на что клеить гипсокартон: рекомендации мастеров Среди множества современных строительных материалов,


Материалы


887.


Обмазочная цементная гидроизоляция Bergauf Hydrostop Цементная гидроизоляция для обмазки – очень важный строительный компонент.


Интерьер


849.


Дизайн коврового покрытия для дома и квартиры: как правильно выбрать Во многих российских квартирах

Виды утеплителей — какой лучше выбрать для утепления стен дома

Важным элементом строительства является — утепление дома. В России все таки большая часть года — это зима. Вы наверное слышали такое выражение — топи не топи, а все равно холодно!

Утепление домов производится с помощью таких строительных материалов как утеплители. А вы знаете, какие виды утеплителей существуют и какой лучше выбрать. Сегодня вы узнаете о нескольких самых популярных на сегодняшний день утеплителях.

Ведь ошибиться при выборе утеплителя легко, а вот заменить его будет довольно дорого да и трудно. Если в холодное время года тепло в вашем доме держится не долго, а счета за газ или дрова растут, стоит задуматься об утеплении дома.

Первое что приходит в голову – это утеплить окна, стены, пол, двери и крышу. Что касаемо стен, здесь довольно просто, большую потерю тепла можно исправить путем утепления снаружи и изнутри.

Итак, перейдем к видам утеплителей. Самым простым и самым дешевым утеплителем является солома. Она применяется в виде соломенных блоков или при строительстве саманного (глина+солома) дома.

Конечно саман сейчас редко кто строит. А значит переходим к более современным утеплителям. Из современных, можно выделить три основных и популярных вида – стекловата, каменная вата и пенополистирол.

 Стекловата

В советское время это был самый распространенный, да наверное и единственный вид. У стекловаты есть очень огромный минус, препятствующий применению стекловаты как основного.

Она слишком хорошо впитывает влагу, что приводит к ее усадке. При наличии не большой щелки, хотя бы 1 сантиметр, тепло из помещения будет быстро выходить а расходы на отопление увеличиваться.

Стекловату рационально использовать для звукоизоляции в перегородках. И в качестве вспомогательного слоя утепляя чердак или пол.

Базальтовая вата

Второй вид — плиты из каменной, на основе базальта, ваты. Базальтовая плита производится из минеральных камней нескольких видов. Она не горит и обладает хорошими теплоизоляционными свойствами.

Для утепления лучше выбирать базальтовые плиты толщиной 50 миллиметров, 100 миллиметровые укладываются быстрее, но в этом случае труднее перекрыть все стыки ( а это мостики холода) и не много труднее резать толстую плиту.

Базальтовые утеплители имеют несколько степеней жесткости. По теплоизоляционным свойствам они одинаковые, но более жесткие можно применять в качестве фасадных плит под штукатурку.

Жесткие плиты стоят подороже, поэтому внутри каркаса лучше применять плиту с малой жесткостью. Базальтовый утеплитель можно легко резать обычным острым ножом.

Утеплители из базальтовой и стекловаты выпускаются как в виде рулонов, так и плит. Утепление стен и крыши намного легче производить плитами. А рулоны легче раскатывать при утеплении полов и чердаков.

Пенопласт

Следующий вид – пенополистирол или по простому пенопласт. Теплоизоляционные свойства пенопласта намного выше, чем на пример у базальтовой ваты, соответственно толщина слоя может быть меньше.

У пенополистирола имеется 3 существенных недостатка:

  1. Это горючий материал. При горении, плавлении, выделяются вредные вещества.
  2. Почему-то к пенопласту не равнодушны мыши ( очень уж они любят его грызть).
  3. При наличии одного маленького отверстия, тепло будет улетучиваться из помещения.

Поэтому его рекомендуется использовать в качестве утеплителя внутри стен из кирпича, сибита, бетона и т.д. Он почти не впитывает влагу, поэтому его можно монтировать не устраивая воздушные каналы для проветривания.

Легко ломается и крошится, поэтому монтаж следует производить как можно аккуратней, а для утепления пола его использовать немного затруднительно. Такими недостатками меньше всего страдает экструдированный пенополистирол.

Конечно и стоит такой утеплитель несколько дороже обычного пенополистирола и на много дороже базальтовой ваты. Но экструдированный плотнее обыкновенного, поэтому его легче монтировать, можно не бояться сломать или раскрошить.

Он является наверное самым лучшим материалом при утеплении полов, особенно под стяжку для теплого пола. Список видов утеплителей постоянно пополняется, но требуется время для испытания новых утеплителей.

Эковата

Не очень давно появился такая разновидность как – эковата.

Эковата – это расщепленная бумага (целлюлоза) с добавлением противопожарных и антисептических веществ. Эковата насыпается навалом или распыляется на вертикальные поверхности шлангом. Слишком хорошо впитывает влагу, при нарушенной пароизоляции этот утеплитель будет мокрым как после дождя.

Для утепления изнутри есть несколько видов:

  • обои или пластины из пробкового утеплителя;
  • обои из пенополистирола с теплоизолирующими свойствами;
  • теплоизоляционная пенополистироловая штукатурка;
  • пенополиэтилен (полифом) — специальный обойный утеплитель.

Пенополиэтилен располагается под обоями и имеет бумажное покрытие со специальной подложкой или фольгированное покрытие.

Посмотрите видео — выбор утеплителя:

В России создали строительный утеплитель из пищевых отходов

Российские ученые ведут разработки строительных утеплителей на основе отходов лесной и пищевой промышленности. Новый материал сможет заменить прежние, неэкологичные и небезопасные для здоровья. Так, в основе строительной ваты — синтетические фенолформальдегидные смолы, которые вредны для людей.

Как рассказывает DairyNews.ru, новинку создают на клеевой основе из полимера декстрана. Они биологически нейтральна, поскольку вырабатывается специальными бактериями Leuconostoc mesenteroides, обычно применяющимися при производстве йогуртов. В их «рационе» — молочная сыворотка и патока, остатки от производства сыра и сахара из свеклы. Связующее вещество добывается в обычной лабораторной посуде, благодаря чему при массовом производстве удастся обойтись без дорогостоящих биореакторов.

Далее технология предполагает, что готовый клеевой раствор очищается от лишней воды, затем его смешивают с измельченными отходами деревообрабатывающей промышленности. Завершающей стадией станет формование массы. Получившиеся строительные маты пройдут конвекционную сушку и после этого будут готовы к отправке к строителям.

Сегодня наиболее популярен такой утеплитель, как строительная вата. Он стоит бюджетно и дает отличный изолирующий эффект. Но в его составе есть опасные для здоровья синтетические фенолформальдегидные смолы, они выделяются при нагреве (к примеру, в жаркую погоду) и могут провоцировать онкологические заболевания. У экологичной альтернативы хорошие перспективы.

Директор компании-разработчика «Хэтвуд», доцент кафедры технологии композиционных материалов и древесиноведения Сибирского госуниверситета им. М.Ф. Решетнёва Михаил Баяндин обещает, что рыночная цена на новый утеплитель будет сопоставима со стоимостью качественной минеральной ваты. 

При этом все производство будет основано на переработке промышленных отходов, а итоговые материалы подойдут для рециклинга. Другой плюс самого процесса производства утеплителя – на него потребуется значительно меньше энергозатрат, чем на выпуск минеральной ваты.

Экологические плюсы разработки оценили в Московском государственном техническом университете им. Н.Э. Баумана, но отметили, что важно добиться механической прочности и водостойкости материала.

Проект экологичного утеплителя находится в стадии завершения НИОКР. Разработчики рассчитывают, что если производители стройматериалов заинтересуются новой технологией, то новинка появится на рынке через 2–3 года.

виды теплоизоляторов и их применение в строительстве

Современные строительные магазины предоставляют достаточно широкий выбор утеплителей для дома. Они обладают хорошими теплоизоляционными характеристиками, долговечностью и многофункциональностью в использовании. Но достаточно ли всех этих «универсальных» качеств для такой конкретной задачи, как теплоизоляция мансарды или качественная звукоизоляция жилой комнаты?

Вот об этим мы сейчас и поговорим: что такое утеплитель и чем разные его виды отличаются друг от друга в процессе эксплуатации и монтажа.

Итак, то, какой именно утеплитель вам понадобится, решать нужно еще на стадии проектирования дома. Ведь от его качеств будет зависеть то, насколько комфортно будет времяпровождение в помещении, будет ли помещение пожаробезопасным и не придется ли потом иметь в будущем такие проблемы как намокание утеплителя или семейство мышей в стенах.

В общей сложности утеплители сегодня применяются в жилом доме в таких конструкциях:

От удачного выбора утеплителя напрямую зависит:

  • какие отделочные материалы нужно будет приобрести, ведь не все материалы сочетаемы;
  • здоровье домочадцев, которые будет каждый день вдыхать комнатный воздух;
  • пожаробезопасность всего здания;
  • комнатная температура и наличие в доме мостиков холода.

Вот почему к утеплителю предъявляется столько требований:

Ка вы видите из иллюстрации, по своим свойствам утеплители отличаются друг от друга. Что вполне естественно, ведь их изготавливают из самого разного сырья: начиная от газеты и заканчивая самым настоящим камнем.

Если сравнивать утеплители между собой по теплопроводности, получим такую картину:

Второй важный момент – паропроницаемость. Ведь при выборе утеплителя для крыши необходимо изначально определиться, будут ли «дышать» стены и скаты, или нет.

Вот в чем, собственно, разница:

Конечно, если в качестве кровельного покрытия у вас будет идти рубероид или гибкая черепица, тогда лучше нужно максимально защитить скаты от пара, ведь ему попросту некуда будет выходить.

Чтобы водяной пар из утеплителя мог беспрепятственно выходить, в кровельном пироге специально устраивают вентилируемый воздушный зазор. Он располагается с холодной стороны крыши:

Так, в качестве «дышащего» утеплителя хороша себя зарекомендовала минеральная вата, упругая и долговечная. А вот экструзионный пенополистирол идеально подходит под стяжку для полов по грунту.

Важна также прочность утеплителя и его способность держать форму. Ведь если на утеплитель стен и крыши ничего не давит, то в случае с полом материалу придется еще и выдерживать серьезные нагрузки.

И, наконец, если говорить об утеплении фасада, для этой цели больше подходит вата, целлюлозная или минеральная. А вот при колодезной кладке предпочтение отдают такому материалу, который не будет пропускать влагу ни при каких условиях. А это уже – экструдированный пенополистирол.

Учитывайте и тот момент, что внешняя штукатурная отделка прекрасно сочетается с утеплителем плотностью меньше 30 кг/м2, чем может похвастаться минвата, ППС и любой органический материал. А вот для деревянного дома подходит дышащий материал, как эковата, пробка, пенька и минеральные плиты.

Давайте рассмотрим, какие виды утеплителей сегодня наиболее популярны и на что стоит обратить внимание при их выборе. Условно все теплоизоляционные материалы российского рынка делят на органические и неорганические.

Органические изготавливаются из полимеров и пенопласта. Такие утеплители считаются самыми удобными и легкими по весу, но при этом они зачастую относятся к группам горючести Г1, Г2 и Г3. Это – не самый лучший показатель, и использование таких утеплителей ограничивается жилой постройкой. Кроме того, при нагреве многие полимеры выделяют небезопасные летучие вещества.

Правда, вам будет интересно узнать, что пенополистирол и пенополиуретан теоретически к ним как раз и относится. Ведь с точки зрения химической науки это органические вещества! Так что все-таки такое органический утеплитель?

Давайте начнем с определения. Приставка “Оrganic” у строительных материалов означает принадлежность к животному или органическому миру. Т.е. это теплоизоляторы, изготовленные на основе растительного или животного сырья с добавлением специальных связующих.

Растительные – это в основном лен, конопля, древесина, соя и другие. К животным, естественно, относят шерсть. Кроме того, в разряд органических утеплителей даже входят материалы из некоторых видов пластика и цемента. Занимательно, не правда ли?

Растительные утеплители: вековые традиции

Во многих европейских странах в частном домостроении до сих пор активно используется теплоизоляция на основе льна или конопли. В России – льноволокно, т.к. коноплю здесь никто не разрешит, а лен пока остается достаточно дешевым сырьем. Также веками в качестве надежной изоляции использовалась натуральная шерсть, особенно – войлок.

Правда, европейская технология обработки льна значительно отличается от отечественной. Там этот процесс довели до совершенства: при помощи аэроформирущего устройства волокна укладывают в маты, а затем в печах при помощи горячего воздуха термо фиксируют. И есть ради чего повозиться: материал сам по себе исключительно экологичен, ко всему еще и подвержен вторичной переработке. В продаже вы увидите две основные марки: российскую “Утеплен” и финскую “Евролен”.

Согласно датским исследованиям, плиты из льна не усаживаются и не теряют форму, и в благополучных условиях служат до 75 лет. Для такой крыши не нужна ни пароизоляция, ни конденсат. При этом в утеплителе из льна полностью сохраняются его ценные антисептические и бактерицидные свойства.

Еще один не такой известный материал – пенька. Это плиты, рулоны и маты на основе пеньковых волокон. У него высокая плотность (от 20 до 60 кг/м3), но сам материал плохо держит нагрузку.

А вот про утеплитель из водорослей вы наверняка и не слышали. Это – поистине экзотический метод обшивки стен дома, с плотностью до 80 кг/м3. Такой утеплитель не гниет, не горит и не нравится грызунам. Он, в отличие от многих его аналогов, устойчив к грибку и подходит для легких стен.

Надежные составы на основе пены

Эти утеплители вам наверняка хорошо знакомы. Так, пенополистирол – это утеплитель, который состоит из пузырьков воздуха в вспененном материале. При этом коэффициент проводимости тепла у пенополистирола значительно ниже, чем у ваты, и находится в пределах 0,03-0,037, т.е. он более практичен. Плотность у пенополистирола – 11-40 кг/м3.

А теперь перечислим основные минусы: хрупкий, легко загорается и выделяет при этом токсичные вещества, а также практически «не дышит». В помещении, которое отделано таким утеплителем, нужно устанавливать дополнительную приточно-вытяжную вентиляцию.

Экструдированный пенополистирол – это уже новое поколение утеплителей своего класса. Особенно удобный в процессе монтажа: легко режется, более прочный, чем пенопласт, и менее хрупок. Но все так же легко воспламеняется при пожаре. Хотя по теплопроводности уровнем выше и пенопласта, и минеральной ваты.

Для стен, к слову, появился вот такой новый вид утеплителя из этой группы:

И, наконец, пенополиуретан. Это жидкий утеплитель, который удобно распылять как на вертикальные стены, так и в самые труднодоступные места. Благодаря образовавшемуся бесшовному покрытию в таком помещении никогда не будет мостиков холода, и не придется затыкать кусками и отрезками ваты сложные углы. Кроме того, пенополиуретан стойко переносит любые морозы.

Сейчас ценителей пены радует такая новинка:

Древесно-волокнистые утеплители: для «дышащих» стен

Целый ряд натуральных утеплителей изготавливают при помощи измельченной древесины и формирования ее в волокнистую массу. Мы сейчас говорим не об узнаваемом ДВП, которое применяется в мебельном производстве и не отличается чем-то особенным. Мы говорим о теплоизоляционных плитах из мягкой ДВП-плиты, которая изготавливается из волокон хвойной древесины и клея.

На российском рынке это отечественная марка “Софтборд”, финская Isoplaat и международная Steico. Так, плиты “Изоплат” на всю свою толщину пропитаны парафином, а у “Софтборда” вся продукция идет с верхним битуминизированным водоотталкивающим слоем. А вот продукция Steico изготавливается с добавлением фосфата аммония. 

Благодаря такому утеплителю в доме микроклимат не хуже, чем в постройке из деревянного сруба. А это наиболее близкая к оптимальной влажность и стен и воздуха. А вот теплоизоляционные плиты Vital производят из древесных волокон, специально термически обработанных и отбеленных при помощи кислорода.

К натуральным утеплителям относятся также экологичные пробковые. У них коэффициент теплопроводности 0,045-0,06. Пробка – это измельченная кора дерева, которую спрессовывают в заводских условиях при помощи горячего пара, а затем склеивают при помощи смолы. Благодаря этому пробковый утеплитель дышит, легко режется, не обрастает плесенью и нетоксичен. В последнее время он становится все более и более популярным.

Также пробка – это легкий, не подверженный усадке материал. Пробковые теплоизолирующие панели прекрасно восстанавливаются после механической деформации. В них нет никаких искусственных добавок, их не покрывает плесень и не едят грызуны.

Еще пробка хороша тем, что устойчива к воздействию углеводородов (битума). Она не аккумулирует и не проводит электричество, и удивляет диапазоном температур, которые ей не страшны: от -200°С до +130°С.

Дополнительно такие плиты обрабатываются огнестойкими составами, благодаря чему те не горят и не выделяют ни формальдегидов, ни фенолов. Плюс пробковые плиты значительно снижают уровень шума. Но, к сожалению, на российском рынке пробковые плиты пока что чаще используются в качестве подложки для пола, чем как полноценный утеплитель (в сравнении с Европой).

Целлюлоза: пушистый заполнитель для сложных мест

Вы наверняка заметили, как активно рекламируют целлюлозную вату, которую называют эковатой. Ее теплопроводность находится в пределах значения от 0,032 до 0,038.

Эковата – достаточно новый утеплитель для нашей страны. Состоит он из целлюлозы, попросту говоря – из бумаги, на 81% и на 19% из природных борных минералов. Они играют роль антипирена и антисептика. А в качестве сырья для эковаты идет самая обычная макулатура.

К слову, не такое уж это и ноу-хау: теплоизоляцию из переработанной бумаги запатентовали еще в 1993 году, в Англии, правда, само ее производства началось значительно позже. А создание специальных выдувных машин модернизировало сам процесс теплоизоляции.

Сегодня наиболее популярна канадская технология производства эковаты, применяемая во всем мире уже более 60 лет. В США, Канаде и Европе ее потребление растет ежегодно на 20-30%, и такой утеплитель используется даже при строительстве аэропорта и стадиона. В нашей стране эковата заявила о себе только в 1993 году, но уже использовалась для строительства храма в Москве.

В чем же ее секрет? У эковаты особой капиллярная структура – структура древесных волокон. По ней водяные пары выходят наружу в атмосферу. Также у бумаги слишком мала воздухопроницаемость (не зря мы ею обмахиваемся). А то, как эковата мелкая и способна собой заполнить все щели и углы, придает ей куда более ценных свойств, чем у тех же плит.

Эковата также противопожарна. Благодаря специальной пропитке, пламя только обугливает ее поверхностный слой. При высокой температуре бораты начинают интенсивно выделять воду и снижать тем самым температуру. А низкая воздухопроницаемость самой бумаги ограничивает доступ кислорода к месту горения. В итоге скорость проникновения огня в эковате составляет всего 1-2 мм в минуту. Причем поверхностный слой этого утеплителя разлагается на воду и окись углерода, и не выделяет никаких токсичных веществ во время пожара.

К слову, целлюлозный утеплитель вовсе не обязательно должен быть только в виде засыпного материала. Сегодня из такого же материала изготавливают плиты для утепления скатных кровель, немецкие Homann Daemmstoffwerk и финские Vital. В процессе производства из целлюлозы выпаривают излишки воды и соединяют между собой природной смолой. В итоге плиты получаются водонепроницаемыми, но при этом паропроницаемыми.

Перед применением эковату слегка распушивают (она спрессована в транспортируемом виде), а затем выкладывают на утепляемую поверхность. Также эковату засыпают в ниши скатов, только утрамбовывают сильнее.

Но тогда, чтобы в жилой мансарде не образовывалась пыль от утеплителя, обязательно между отделкой и утеплителем кладут плотную крафт-бумагу. Со временем эковата спрессуется сама, и пыль точно не будет страшна.

Вот как выглядит процесс внешнего утепления крыши:

Для изготовления таких утеплителей в ход идут минеральные вещества: стекло, шлак, асбест и горные породы. Для превращения таких твердых материалов в тонкие волокна и другие формы задействуется целая научная магия.

Давайте начнем с особо популярных неорганических утеплителей – минеральной ваты. Сырьем для ее производства служит базальт, кварц, стекло или доменные шлаки.

Плотность минеральной ваты варьируется от 20 до 200 кг/м3. Среди ее основных минусов назовем: привлекательность для мелких грызунов и даже насекомых, а также быструю потерю теплоизоляционных свойств при намокании.

Минеральная вата отлично подходит для изоляции пола, ведь выдерживает значительные нагрузки:

Стеклянная вата: дешево и сердито

Бюджетную и вездесущую стекловату обычно недолюбливают за то, что с ней довольно сложно работать. Да и в жилом помещении ее использовать нежелательно: какой бы герметичной ни была отделка стен, если возникнет хоть одна щель, тысячи мелких иголок попадут в воздух.

Зато из стекловаты сегодня стали изготавливать довольно интересный продукт – жесткие минеральные плиты для организации «плавающего пола». Они равномерно передают нагрузку от стяжки, и при этом не нужно обустройство лаг. Такие плавающие полы отличаются тем, что не только предотвращают потери тепла, но и шумоизолируют помещение.

Каменная вата: высокая пожаробезопасность

Куда более экологичной считается каменная вата. Изготовленная из базальта, она обладает намного более короткими и толстыми волокнами, чем у стеклянной ваты, а вес ее больше в 2-3 раза.

Но, к сожалению, из-за этого такой утеплитель более ломкий, тяжелый и часто крошится по краям, если это только не самый качественный материал. А из крошащихся краев возникают мостики холода.

Зато каменная вата полностью пожаробезопасна. Она не только не горит, но еще и замедляет огонь во время пожара. Вот почему каменная вата так востребована в промышленном и коммерческом строительстве. Именно из нее изготавливают трехслойные сендвич-панели и плоские кровли городских зданий.

Также никакая другая вата не заменит каменную при устройстве противопожарных стен:

Шлаковата: утилизация отходов

Изготавливают этот бюджетный утеплитель из отходов металлургического производства. Это, по сути, та же каменная вата, но с худшими свойствами. Например, она намного сильнее впитывает влагу и подхоит только для утепления сухих помещений:

Удачный выбор – теплоизоляция нежилого чердака, где всегда сухо:

Кварцевая вата: гибкость и упругость

Давайте отдельно поговорим о кварцевой вате, ведь вы наверняка слышали о ней меньше всего. Появился на свет такой утеплитель благодаря особой технологии производства длинных и упругих волокон из минералов. Это забавно выглядит, если вам доводилось видеть этот процесс: почти тоже самое происходит с сахарной ватой.

А здесь сырье в виде кварца с дополнительными элементами подается в центрифугу, и при помощи центробежной силы наружу выталкиваются тонкие струи. Их дополнительно вытягивают газовой горелкой – так, что волокна становятся толщиной 3,5-5 мкм и длиной до 30 см.

Далее волокна переплетаются в вату, и на ощупь не отличаются от обычной медицинской (или той же сладкой). Кварцевая вата получается особенно упругой, с высокими шумо- и теплоизоляционными свойствами и достаточной паропроницаемостью, чтобы внутри нее не скапливался конденсат. Плотность у нее ниже, а потому она сжимается в 4-5 раз больше, чем та же каменная.

Кварцевая вата настолько хорошо теплоизолирует стены и потолок дома, что экономия на отоплении обычного жилого дома составляет до 67%. Заметьте, достаточно существенно! Такую вату сегодня активно выпускают Isover. Рассчитана она на 50 лет и более.

К слову, кварцевая вата способна сжаться в 4-5 раз больше, чем каменная. Дело в том, что у кварцевой ваты плотность намного ниже, чем у каменной. Это вовсе не недостаток, а даже преимущество, ведь теплоизоляция у ваты достигается именно количеством пузырьков воздуха между волокнами, а не количеством самих волокон (вот почему греет шуба и шерсть).

Благодаря меньшей плотности кварцевая вата намного легче. Для сравнения: здесь плотность 30-40 кг/м3, а у каменной – 30-60 кг/м3. Так и для более тяжелых фасадных утеплителей: у кварцевой 100 кг/м3, у каменной – 160 кг/м3. В плане расчета нагрузки на фундамент это – важный момент.

Как и для утепления фасада, ведь в общей сложности также фасадные плиты должны быть удобны, надежны и достаточно прочны, чтобы быть установленными в вертикальном положении, причем до 6 метров высотой, а не только до 3. Так горизонтальных перемычек будет меньше, и фасадные работы пройдут быстрее и с меньшими затратами.

И, наконец, кварцевая вата отличается высокой экологичностью. Не только потому, что кварц – это природный материал, но и потому, что волокна здесь настолько упругие и настолько хорошо переплетены, что не вылетают из ваты. А потому безопасны для применения в жилом помещении.

Керамическая вата: высокая огнестойкость

Еще одно сегодняшнее ноу-хау – керамический утеплитель. Это самая настоящая вата! Стоит ли удивляться, ведь волокна научились делать даже из камня, почему бы не из керамики?

Применяется эта вата для изоляции пожаронебезопасных мест: дымоходов, труб каминов и различных элементов сауны:

К неорганическим утеплителям относят также материалы из асбеста и смешанного сырья. Используются они в качестве связывающей основы. Такие теплоизоляторы наносят прямо на место, которое следует утеплить, и оставляют высыхать.

Те же утеплители на основе асбеста способны выдержать все 900°С, но, к сожалению, обладают многочисленными порами и легко впитывают влагу. Да и безопасными их назвать нельзя.

Конечно, у каждого из материалов, о которых мы вам рассказывали, есть свои особенности установки. Рассмотреть здесь технологию установки абсолютно всех видов утеплителей мы физически не сможем, а потому давайте разберемся с самыми востребованными из них. Вот интересный обзор топ-5 самых популярных утеплителей:

А какой утеплитель пришелся вам больше всего по душе?

Изоляция зданий: где это необходимо и почему это важно

Хотя большая часть изоляции в зданиях используется для тепловых целей, она также обеспечивает решения для акустических, пожарных и ударных проблем. После надлежащей герметизации изоляция является наиболее важным элементом здания с точки зрения комфорта и энергоэффективности. Без надлежащей теплоизоляции в вашем здании вам придется инвестировать в дорогостоящие устройства отопления и охлаждения, которые потребляют больше электроэнергии, газа и масла, чем необходимо.

Некоторые из наиболее распространенных материалов, используемых для изоляции, — это целлюлоза, стекловата, минеральная вата, полистирол, уретановая пена, вермикулит, перлит, древесное волокно, растительное волокно, растительная солома, животное волокно, цемент и почва. Эффективность изоляции оценивается значением R, которое представляет собой отношение разницы температур в изоляторе и теплопередачи на единицу площади в единицу времени через него.

Строительная изоляция

Специалисты по изоляции используют термин «тепловая оболочка» или «оболочка здания» для описания кондиционированного пространства внутри здания, подходящего для людей.Отсутствие естественного воздушного потока в здании создает необходимость в механической вентиляции и высокой влажности, что приводит к конденсации, гниению материалов и росту микробов, таких как плесень.

Тепловой мост — это точка в ограждающей конструкции здания, которая обеспечивает теплопроводность. Тепловые мосты образуются, когда плохие изоляционные материалы, такие как стекло и металл, создают постоянный путь при перепадах температур. Инженеры могут минимизировать эту теплопроводность, уменьшив площадь поперечного сечения моста или увеличив длину моста.

Изоляционные бетонные формы — это системы из армированного бетона, которые остаются на месте в качестве постоянной внутренней и внешней основы для крыш, стен и полов. Модульные блоки соединяются друг с другом, складываются в сухую штабель и заполняются бетоном, образуя форму полов здания. Это один из наиболее распространенных методов строительства изоляции для малоэтажных коммерческих, многоэтажных жилых, энергоэффективных и устойчивых к стихийным бедствиям зданий.

Строительные изоляционные материалы

Объемная изоляция и световозвращающая изоляция являются наиболее распространенными изоляционными материалами.Объемная изоляция действует как барьер для теплового потока между зданием и внешней средой. Его можно купить в рулонах или досках, и он обычно изготавливается из стекловаты, полиэстера, натуральной шерсти или переработанной бумаги. Светоотражающая изоляция обычно изготавливается из блестящей алюминиевой фольги, наклеенной на бумагу или пластик. Он используется для охлаждения зданий в теплые месяцы за счет отражения лучистого тепла.

Изоляционные бетонные формы обычно изготавливаются из пенополистирола, пенополиуретана, древесного волокна на цементной основе или ячеистого бетона.Инженеры помещают арматурные стальные стержни внутрь формы перед заливкой бетона, чтобы придать ей гибкую прочность. Формы часто остаются на месте после того, как бетон затвердел, чтобы обеспечить звукоизоляцию, теплоизоляцию, основу для гипсокартона и место для электропроводки и водопровода.

Пена для распыления — это тип изоляции, в которой пенополиуретан и изоцианат распыляются с помощью пистолета. Этот тип изоляции можно распылять на бетонные плиты, в полости стен и через просверленные отверстия в гипсокартоне.

Климатические соображения

Если вы строите здание в холодном климате, ваша цель — уменьшить поток тепла из здания. Потери тепла можно уменьшить, установив эффективные окна, используя объемную изоляцию и сведя к минимуму количество остекления, не обращенного к солнечным батареям.

Если вы строите здание в жарком климате, вашим крупнейшим источником тепловой энергии является солнечная радиация. Следует принимать во внимание коэффициент притока солнечного тепла, то есть коэффициент пропускания солнечного тепла.Вы можете уменьшить количество солнечного излучения, применив светлые кровли, теплоотражающую краску и остекление со специальным покрытием.

В жилом доме наиболее важно утеплить потолок и крышу, за ними следуют стены, пол и водопроводные трубы. В больших коммерческих зданиях двери, кухни, ванные комнаты и вестибюли также должны быть должным образом изолированы, чтобы предотвратить повреждение, связанное с погодными условиями, и сократить объем технического обслуживания. Изоляция не только снижает затраты и обеспечивает комфорт жильцам здания, но также защищает окружающую среду от ненужных выбросов парниковых газов и дает ценные налоговые льготы.

* Фотография предоставлена: PNNL — Тихоокеанская северо-западная национальная лаборатория через Flickr, Ахим Геринг через WikiMedia Commons

Что такое Изоляция здания — Изоляция дома

Пример — Потери тепла через стену

Основным источником потерь тепла от дома являются стены. Рассчитайте скорость теплового потока через стену площадью 3 м x 10 м (A = 30 м 2 ). Стена толщиной 15 см (L 1 ) сделана из кирпича с теплопроводностью k 1 = 1.0 Вт / м.К (плохой теплоизолятор). Предположим, что температура внутри и снаружи составляет 22 ° C и -8 ° C, а коэффициенты конвективной теплопередачи на внутренней и внешней сторонах h 1 = 10 Вт / м 2 K и h 2 = 30 Вт / м 2 К соответственно. Обратите внимание, что эти коэффициенты конвекции сильно зависят, в частности, от внешних и внутренних условий (ветер, влажность и т. Д.).

  1. Рассчитайте тепловой поток ( потери тепла ) через эту неизолированную стену.
  2. Теперь предположим, что теплоизоляция на внешней стороне этой стены. Используйте пенополистироловую изоляцию толщиной 10 см (L 2 ) с теплопроводностью k 2 = 0,03 Вт / м.К и рассчитайте тепловой поток ( теплопотери ) через эту композитную стену.

Решение:

Как уже было написано, многие процессы теплопередачи включают композитные системы и даже включают комбинацию как теплопроводности, так и конвекции.С этими композитными системами часто удобно работать с общим коэффициентом теплопередачи , , известным как U-фактор . Коэффициент U определяется выражением, аналогичным закону охлаждения Ньютона :

Общий коэффициент теплопередачи связан с общим тепловым сопротивлением и зависит от геометрии задачи.

  1. голая стена

Предполагая одномерную теплопередачу через плоскую стенку и не принимая во внимание излучение, общий коэффициент теплопередачи можно рассчитать как:

Тогда общий коэффициент теплопередачи равен:

U = 1 / (1/10 + 0.15/1 + 1/30) = 3,53 Вт / м 2 K

Затем тепловой поток можно рассчитать просто как:

q = 3,53 [Вт / м 2 K] x 30 [K] = 105,9 Вт / м 2

Суммарные потери тепла через эту стену будут:

q потери = q. A = 105,9 [Вт / м 2 ] x 30 [м 2 ] = 3177 Вт

  1. композитная стена с теплоизоляцией

Предполагая одномерную теплопередачу через плоскую композитную стену, отсутствие термоконтактного сопротивления и без учета излучения общий коэффициент теплопередачи можно рассчитать как:

Тогда общий коэффициент теплопередачи равен:

U = 1 / (1/10 + 0.15/1 + 0,1 / 0,03 + 1/30) = 0,276 Вт / м 2 K

Затем тепловой поток можно рассчитать просто как:

q = 0,276 [Вт / м 2 K] x 30 [ K] = 8,28 Вт / м 2

Суммарные потери тепла через эту стену будут:

q потери = q. A = 8,28 [Вт / м 2 ] x 30 [м 2 ] = 248 Вт

Как видно, добавление теплоизолятора приводит к значительному снижению тепловых потерь. Его надо добавить, добавление следующего слоя теплоизоляции не дает такой большой экономии.Это лучше всего видно из метода термического сопротивления, который можно использовать для расчета теплопередачи через композитные стены . Скорость устойчивой теплопередачи между двумя поверхностями равна разнице температур, деленной на общее тепловое сопротивление между этими двумя поверхностями.

Общие изоляционные материалы, используемые в зданиях

Изоляционные материалы поступают из различных источников, таких как минералы, растительные волокна, продукты животного происхождения и синтетические соединения.Как и во многих инженерных решениях, каждый материал имеет достоинства и недостатки, которые необходимо учитывать при выборе утеплителя для строений .

В этой статье представлен обзор основных вариантов, представленных на рынке, и того, как они работают в реальных проектах. Существуют изоляционные материалы, которые больше не используются, но могут быть найдены в старых конструкциях — одним из примеров является изоляция с содержанием асбеста, запрещенная законом.


Убедитесь, что ваше здание имеет надлежащую изоляцию, и сократите расходы на электроэнергию.


Стекловолокно

Стекловолокно — один из самых популярных изоляционных материалов, который изготавливается путем плетения тонких стеклянных нитей. Производится в основном из переработанного стекла.

Характеристики:
— Минимизирует теплопередачу
— Невоспламеняемость
— Диапазон значений R от 2,9 до 3,8 на дюйм
— Низкая стоимость
— Экологичность
— Не впитывает воду
— Может быть опасным для монтажников, которым требуются специальные средства защиты.Мелкие частицы стекла могут повредить глаза, легкие и кожу.
— Нанесение рыхлой изоляции с помощью выдувной машины

Доступен в:
— Одеяла (войлок и рулоны): стекловолокно бывает средней или высокой плотности, с более высокими значениями R, чем стандартные войлок — в системе одеял (BIBS): разновидность изоляции с неплотным заполнением, которая выдувается сухим воздухом, и испытания показали более высокий уровень изоляции, чем у других типов стекловолокна
— Жесткие плиты
— Изоляция воздуховодов
— Жесткая волокнистая изоляция

Минеральная вата

Минеральная вата относится к двум типам изоляционных материалов:

  • Минеральная вата из базальта или диабаза
  • Шлаковая вата из доменного шлака сталелитейных заводов

Характеристики:
-Содержит в среднем 75% постиндустриальных переработанных материалов
-Не требует добавок, чтобы сделать его огнестойким
-Не рекомендуется в экстремальных жарких средах
-Негорючий
-R- значение в пределах от R-2.8 к R-3.5
-Экологически чистый
-Не плавится и негорючий
-Умеренная стоимость

Доступен в:
— Одеяло (ватные и рулонные)
— Сыпучие и выдувные
— Жесткая волокнистая или волокнистая изоляция

Целлюлоза

Целлюлоза производится из переработанной бумаги, в основном газет. В процессе производства бумага сначала разбивается на более мелкие кусочки, а затем превращается в волокна. Целлюлоза — одна из самых экологически чистых форм изоляции, она доступна в версиях с насыпью и выдуванием.

Характеристики:
-Экологически чистый
-Большая часть его содержимого перерабатывается (82-85%)
-Препятствует воздушному потоку
-Добавлен минеральный борат для обеспечения огнестойкости и устойчивости к насекомым
-Не требует барьера для влаги
— R-значения варьируются от R-3,1 до R-3,7
-Отличный продукт для минимизации повреждений от огня
-Благодаря своей компактности он почти не содержит кислорода в пределах
-Может вызывать аллергию
-Требуются квалифицированные рабочие для установки
-Умеренная стоимость

Полистирол

Полистирол — бесцветный и прозрачный термопласт.Утеплитель из полистирола доступен во многих версиях:

  • Формованный пенополистирол (MEPS), обычно используется в пенопластах и ​​в качестве мелких шариков пенопласта.
  • Пенополистирол (EPS), из маленьких пластиковых шариков, сплавленных вместе
  • Экструдированный полистирол (XPS), — это расплавленный материал, прессованный в листы, также известный как пенополистирол

Характеристики:
-Низкая стоимость, но не безвредна для окружающей среды
-Горючие, необходимо покрыть огнестойким химическим веществом
-Легкий
-Тенденция к накоплению статического электричества
-Трудно контролировать
-Тепловой дрейф или старение происходит с течением времени — значение R зависит от плотности: дорогой XEP имеет значение R, равное R-5.5, в то время как EPS предлагает R-4
— Водонепроницаемость
— Отличная звуко- и температурная изоляция
— Гладкая поверхность

Доступен в:
— Сыпучий заполнитель (мелкие шарики)
— Изоляция бетонных блоков и изоляционные бетонные блоки
— Изоляционные бетонные формы (ICF)
— Структурные изоляционные панели (SIP)
— Пенопласт или жесткий пенопласт

Полиуретан

Полиуретан доступен в пеноматериале с закрытыми порами и пене с открытыми порами. Пены с закрытыми ячейками обладают ячейками с высокой плотностью, заполненными газом (не содержащим ГХФУ), что позволяет пене расширяться.Пена с открытыми ячейками не такая плотная и наполнена воздухом, создавая губчатую текстуру при нанесении. Однако в некоторых разновидностях с низкой плотностью в качестве пенообразователя используется углекислый газ.

Характеристики:
— Высокая стоимость
— Неэкологичный
— Огнестойкий
— Отличный звукоизолятор
— В новых пенах в качестве вспенивающего агента используется газ, не содержащий CFCs
— Легкий
— R-показатель R-6.3 на дюйм
-Содержит в ячейках газ с низкой проводимостью
-Тепловой дрейф или старение происходит только в пенопластах с закрытыми порами в первые два года после нанесения.Чтобы замедлить тепловой дрейф, можно нанести слой фольги и пластиковых покрытий, обращенных к открытому воздушному пространству, создавая лучистый барьер.
— Распыляемая пена дешевле пенопласта и работает лучше. — Распыленная пена может быстро или медленно расширяться в зависимости от требований пользователя
— Устойчивость к диффузии водяного пара

Доступен в:
— Пенопласт или жесткий пенопласт
— Пена напыляемая и вспененная на месте
— Структурные изолированные панели (SIP)

Натуральные волокна

Многие натуральные волокна находят применение в теплоизоляции зданий.Некоторые примеры — хлопок, овечья шерсть, солома и конопля.

Хлопок доступен в ватинах и рулонах и предлагает следующие характеристики:

  • Состоит из 85% переработанного хлопка и 15% пластиковых волокон
  • Обработано боратом (огнестойкий и отпугивающий насекомых)
  • Минимальные потребности в энергии для производства

Овечья шерсть также доступна в войлоках и рулонах и имеет следующие характеристики:

  • Обработано боратом для защиты от вредителей, огня и плесени.
  • Удерживает воду, но многократное смачивание и высыхание снижает эффект бората

Солома используется в качестве изоляции с 1930-х годов. Он доступен в виде панелей или структурных изолированных панелей (SIP), которые являются звукопоглощающими и имеют типичную ширину от 2 до 4 дюймов.

Конопля не является распространенным изоляционным материалом в США, хотя его R-значения сопоставимы с показателями других типов волокнистой изоляции.

Полиизоцианурат

Полиизоцианурат или полиизо — это термореактивный пластик с закрытыми порами, похожий на полиуретан.Он содержит газ с низкой проводимостью, не содержащий HCF, и его можно вспенивать на месте, что дешевле и эффективнее, чем использование пенопласта.

Polyiso испытывает термический дрейф или старение в первые 2 года после изготовления, но фольга и пластмассовые покрытия могут быть применены лицом к открытому воздушному пространству. Это работает как лучистый барьер, стабилизируя R-значение

.

Полиизо выпускается в следующих формах:

  • Пенопласт или жесткий пенопласт
  • Пена напыляемая и вспененная на месте
  • Ламинированные изоляционные панели
  • Конструкционные изолированные панели (СИП)

Пена цементная

Как следует из названия, этот изоляционный материал изготовлен на основе цемента.Он нетоксичен и негорючий, изготовлен из минералов, добытых из морской воды. Цементная пена похожа на пенополиуретан и может быть распылена и вспенена на месте.

Фенольная пена

Фенольная пена — это еще один тип изоляции, который напыляется и вспенивается на месте. В качестве вспенивающего агента используется воздух, а после отверждения он может давать усадку до 2%.

Что такое изоляционные покрытия?

Облицовки — это покрытия, прикрепляемые к изоляции в процессе производства или после него.Их основные цели — защита поверхности, удержание изоляции и упрощение крепления к компонентам здания. В зависимости от типа облицовки он также может выполнять следующие функции:

  • Действует как воздухо- и пароизоляция
  • Огнестойкость
  • Алюминиевая фольга, в частности, также является радиационным барьером

Наиболее распространенными видами облицовки являются крафт-бумага, белая виниловая пленка и алюминиевая фольга.

Изоляционные материалы, которые больше не используются

Некоторые изоляционные материалы, которые использовались в прошлом, теперь запрещены, недоступны или не используются из-за проблем со здоровьем.Некоторые примеры — вермикулит, перлит и карбамидоформальдегид.

Вермикулит и перлит использовались для изоляции чердаков до 1950 года, но больше не используются, поскольку содержат асбест. Эти изоляционные материалы были в основном доступны в виде сыпучих материалов или гранул.

  • Для вывоза асбеста из существующих зданий требуются сертифицированные подрядчики
  • Наносились путем нагревания каменных гранул до тех пор, пока они не лопаются.
  • Допускается смешивание с цементом

Мочевина-формальдегид представляет собой распыляемую пену, которая широко использовалась в 1970-х и 1980-х годах.Однако из-за неправильной установки было принято много судебных дел, связанных со здоровьем. В результате карбамидоформальдегид был запрещен в жилых домах, но до сих пор используется для кладки стен в коммерческих и промышленных зданиях.

  • В качестве пенообразователя используется сжатый воздух
  • Не расширяется при отверждении
  • УФ-отверждение на основе азота занимает больше времени
  • Водяной пар может проходить через
  • Не содержит антипиренов

Заключение

Огромное количество доступных изоляционных материалов может показаться огромным.Однако с помощью профессиональных инженерных услуг вы можете убедиться, что ваш проект имеет оптимальную изоляцию. Хорошо изолированное здание имеет более низкие расходы на отопление и охлаждение, поскольку эффективная изоляция сводит к минимуму приток тепла летом и потери тепла зимой.

Когда эффективная изоляция сочетается с высокоэффективной конструкцией систем отопления, вентиляции и кондиционирования воздуха, в вашем здании резко снижаются затраты на отопление и охлаждение. В новостройках утепление дешевле и проще, так как нет необходимости нарушать существующую конструкцию.Об этом следует помнить разработчикам, планирующим новый проект.

Что нужно знать перед установкой металлической изоляции зданий

Металлическое здание максимально сохраняет тепло и холод. Это делает металлическую изоляцию здания важной для конструкции, особенно если вы планируете в ней жить.

Существуют различные типы утеплителя, подходящие для этого здания, и каждый имеет свои особенности. Это руководство по установке поможет вам выбрать лучший утеплитель.

A. Типы металлических изоляционных материалов для зданий

torosteelbuildings.com

Существует несколько распространенных типов изоляции для металлических зданий. Их:

1. Лист стекловолокна

Стекловолоконный лист

— самый дешевый и простой вид утеплителя. Непрофессионалы могут установить его с подробными инструкциями. Вы можете купить его в обычных хозяйственных магазинах.

Эффективен в районах с небольшими перепадами температур, но не лучший вариант для регионов с экстремальными летними или зимними условиями.

Стекловолоконный лист бывает двух видов: войлоки и одеяла. «Баттс» означает, что они бывают разрезами, а «одеяла» — рулонами.

2. Сыпучая пломба

Сыпучая заполняющая изоляция состоит из мелких частиц, например, из стекловолокна, камня или целлюлозы. Это идеальный вариант для случайных трещин или щелей, которые трудно закрыть обычными рулонами или панелями.

Однако со временем он провиснет и может впитывать влагу, что приводит к появлению плесени.

3.Пена для спрея

Пена

— идеальный выбор для металлических зданий с препятствиями или необычными конструкциями. Он состоит из полимерных веществ, которые расширяются при соприкосновении с поверхностью здания.

Изоляция из аэрозольной пены заполняет все возможные щели и отверстия. Он состоит из открытых и закрытых ячеек.

Если ваше здание имеет прочную конструктивную целостность, идеально подойдет тип с открытыми ячейками, потому что он дешевле. Однако, если вы не уверены в целостности конструкции, лучше использовать закрытые ячейки, потому что это укрепляет конструкции.

4. Жесткая изоляционная плита

Жесткие плиты из полиуретана, стекловолокна или полистирола обычно используются в зданиях с плоскими крышами. Они дорогие, но более эффективны, чем рулоны из стекловолокна или аэрозольная пена.

Панели легче монтировать, они эффективно блокируют тепло и холод. Однако установить эту плату могут только профессионалы.

Эти параметры определяются такими вещами, как структурная целостность вашего здания, источники тепла, климат и бюджет.Тем не менее, вы должны иметь в виду некоторые технические параметры: значение R и значение уклона крыши.

B. Как определить R-значение и значение уклона крыши

koolfoamllc.com

R-value — это термин, который описывает уровень сопротивления тепловому потоку в изоляции. Более высокие числа означают более высокую устойчивость к нагреванию.

Вы определяете R-значение, умножая разницу температур между объектами на площадь поверхности и время, а затем делите результат на потери тепла.

Чтобы определить размер изоляции, необходимой для здания, необходимо также знать величину уклона крыши здания. Это формула, которая определяет уровень крутизны крыши по сравнению с ее горизонтальной длиной.

Например, значение уклона крыши 1:12 означает, что крыша поднимается на 1 дюйм на каждые 12 дюймов длины крыши. Умножьте результат на длину и высоту здания, и вы получите общий размер изоляции, которую необходимо установить.

Читайте также: Виды металлочерепицы — Металлическая кровля Стоимость

Эти формулы — не единственное, что определяет вашу покупку изоляционного материала.Вам необходимо учитывать другие факторы, такие как форма и структурная целостность здания, климат и возможные источники тепла (включая отверстия и трещины).

C. Цены на металлическую изоляцию зданий

metrointerior.com

Различные типы утеплителей имеют уникальную цену диапазонов . В зависимости от того, где вы живете, вы можете найти определенные диапазоны цен для каждого типа.

Однако для каждого типа изоляции существуют стандарты. Вот чего ожидать:

1.Самый дешевый: лист стеклопластика

Стекловолоконный лист

— самый дешевый вариант. Цены могут варьироваться от 0,12 до 0,60 долларов США за квадратный фут. Чем толще лист, тем выше стоимость.

Это идеальный тип изоляции для дома. Например, для металлического гаража, вмещающего две машины, может потребоваться стеклопластик на сумму от 150 до 600 долларов США.

2. Средний уровень: распыляемая пена и насыпная заливка

Пену

должны наносить профессионалы, но это не так дорого, как жесткие панели.Стандартное распыление с открытыми ячейками в гараже на две машины может стоить от 1 200 до 1 500 долларов США.

Однако распыление с закрытыми ячейками может стоить от 2100 до 3600 долларов США для того же здания. Между тем, свободная заливка может стоить от 450 до 1371 долларов США, в зависимости от размера здания.

3. Самое дорогое: жесткая доска

Утеплитель из жестких плит — самый дорогой из всех видов утеплителей. Он идеально подходит для массивных зданий и соответствует вашим требованиям.

Цена каждой панели варьируется в зависимости от ее толщины, материала и размера. Например, одна панель из полиизоцианурата размером 4 × 8 футов и толщиной 1 дюйм может стоить от 22 до 25 долларов США.

Все эти ценовые диапазоны не включают процесс установки. Однако профессиональный монтаж убережет вас от некачественной изоляции и повреждения конструкции.

Металлическое здание должно иметь надлежащую изоляцию, особенно если оно расположено в районе с экстремальными климатическими или температурными изменениями.

Выбор подходящей изоляции зависит не от цены, а от состояния здания, местных климатических условий, а также размеров и конструкции конструкции.

Независимо от того, выберете ли вы лист из стекловолокна, аэрозольную пену или жесткую панель, правильная металлическая изоляция здания обеспечит вам комфорт в самые холодные или самые теплые дни.

Изоляция зданий | Центр и сеть климатических технологий

Изоляция — это средство экономии энергии, которое обеспечивает сопротивление тепловому потоку.Естественно, тепло перетекает из более теплого помещения в более прохладное. Утепляя дом, можно уменьшить потери тепла в зданиях в холодную погоду или климат и уменьшить излишки тепла в более теплую погоду или климат. Утепление дома дает несколько преимуществ, таких как экономия энергии, экономия затрат и повышенный комфорт. Препятствиями на пути принятия мер по энергосбережению могут быть разделение стимулов, относительно высокие инвестиционные затраты, а также время и усилия, необходимые для реализации энергосбережения. Существует несколько типов изоляции от потерь тепла в холодном климате, каждый со своими техническими характеристиками и финансовыми затратами и преимуществами.Меры по изоляции, как правило, являются одними из наиболее эффективных с точки зрения затрат мер по экономии энергии.

Введение

Утепляя дом, можно уменьшить потери тепла в зданиях в холодную погоду или климат и уменьшить излишки тепла в более теплую погоду или климат. Таким образом, изоляция ограничивает потребность в обогреве или охлаждении дома. Тепловые потери или излишки тепла возникают из-за разницы между температурой внутреннего и наружного воздуха. Естественно, тепло течет из более теплого помещения в более прохладное, и температуры сходятся к равновесной температуре, физическому явлению, основанному на таких механизмах, как передача (тепловой поток через материалы) и вентиляция (тепловой поток через воздух).Изоляция направлена ​​на снижение скорости этого сближения температур, чтобы уменьшить потребность в нагреве или охлаждении.

В этом описании технологии основное внимание уделяется изоляции от потерь тепла, но есть некоторые ссылки на изоляцию для охлаждения.

Существует несколько видов изоляционных мероприятий. Ниже описаны меры по утеплению жилых домов:

Изоляция стен, крыши и чердака, пола и грунта

Изоляция стен, крыши и пола может быть выполнена путем прикрепления изоляционного материала к стене, крыше или полу, как внутри, так и снаружи, e.г. с помощью изоляционных плит. Различные материалы для стен, крыш и полов требуют различных мер по утеплению. Здания могут, например, иметь полые стены, состоящие из двух «обшивок», разделенных полым пространством. Это пространство уже обеспечивает некоторую изоляцию, но может быть заполнено дополнительным изоляционным материалом, например. пена для дальнейшего улучшения изоляционного эффекта. Утеплитель для плоских крыш отличается от утеплителя для более крутых крыш.

Полы обычно делаются из дерева или бетона, каждый из которых требует особых изоляционных мер.Еще один способ уменьшить потери тепла в землю — это теплоизоляция почвы, например, путем размещения изоляционного материала на земле в так называемом «подвальном помещении» (очень низкий подвал).

Возраст здания является важным фактором, определяющим тип изоляции и способ ее установки, например если утеплитель кладут снаружи или внутри конструкции.

Изоляция окон и дверей

Окна и входные двери сильно влияют на потребности здания в отоплении и охлаждении.Новые материалы, покрытия и конструкции привели к значительному повышению энергоэффективности новых высокоэффективных окон и дверей. Новые высококачественные окна могут быть в шесть раз более энергоэффективными, чем более старые окна более низкого качества (Pew Center, 2009). Некоторые из последних разработок, касающихся улучшенных окон, включают многократное остекление, использование двух или более окон из стекла или других пленок для изоляции и покрытия с низким коэффициентом излучения, уменьшающие поток инфракрасной энергии из здания в окружающую среду (Pew Center, 2009). .Следует уделять внимание не только самому окну, но и оконной раме, которая может существенно повлиять на уровень изоляции окна.

Трещины уплотнения

Еще одна изоляционная мера, которая снижает потери тепла, — это заделка трещин в «оболочке» здания. Трещины вызывают проникновение холодного воздуха снаружи или утечку теплого воздуха наружу. Полосы или другой материал можно использовать для заделки трещин в движущихся частях, таких как окна и двери, а также в местах, где различные части конструкции прикреплены друг к другу.

Осуществимость технологий и производственные потребности

Повышение теплоизоляции технически возможно почти для всех зданий, хотя наиболее эффективно добавить теплоизоляцию на этапе строительства. Из-за разнообразия мер изоляции подходящий вариант обычно доступен почти для каждого здания, поскольку в большинстве зданий есть возможности для улучшения изоляции. Наряду с техническими требованиями, человеческие предпочтения в отношении комфорта и эстетики также играют роль, т.е.г. для окон лучшая изоляция идет с более низкой инсоляцией, т. е. меньшим количеством света.

На практике целесообразность мер по утеплению во многом зависит от текущего технического состояния жилища. В частности, уже установленная изоляция ограничивает дополнительную изоляцию. Это связано с физическим пространством, оставшимся для изоляции, и пригодностью существующей конструкции (например, наличие полой стены или достаточной ширины полости, достаточно места в раме для установки лучше изолированных, но обычно более толстых окон, достаточно места для ползания под полом), но также потому, что действует закон убывающей отдачи: каждый дополнительный слой изоляции дает меньшую экономию энергии, чем предыдущий.

Уровень изоляции, который может быть достигнут с помощью различных изоляционных материалов, т. Е. Величина изоляции, обычно выражается как R-значение. Значение R указывает на сопротивление изоляционного материала тепловому потоку. Чем выше значение R, тем лучше изоляция стены, крыши или пола. Для окон используется значение U, математически другое, но аналогичное значению R. В отличие от значения R, чем ниже значение U, тем лучше изоляция окна. В таблице 1 представлены типичные значения изоляции стен, крыши, пола и окон (стекла и рамы) в голландских зданиях в зависимости от их возраста.

Тип изоляции

Теплопотери и типовые форматы изоляции

Год постройки: Rc (м2xK / Вт), U (Вт / м2xK), ширина изоляционного материала (см):

Полость стены и прочая изоляция стен (внутри / снаружи)

<1975

5 см> Rc = 1,61
8 сантиметров> Rc = 2,36 (только выход / дюйм)

> 1975

5 см> Rc = 1,61
7 см> Rc = 2,11
8 см> Rc = 2,36 (только выход / дюйм)
10 см> Rc = 2,86 (только выход / дюйм)

Изоляция крыши

<1975

3 см> Rc = 0,97
8 см> Rc = 2,22

> 1975

5 см> Rc = 1,47
10 см> Rc = 2,72

Утеплитель пола

<1975 3 см> Rc = 0,90

8 см> Rc = 2,15

> 1975 5 см> Rc = 1,40

10 см> Rc = 2,65

Утеплитель окон

Двойное остекление: U = 2,8

Стекло HR ++: U = 1,2

Таблица 1: Типовые значения изоляции стен, крыши, пола и окон (стекла и рамы) в голландских зданиях в зависимости от их возраста

Состояние технологии и ее будущий рыночный потенциал

Изоляционные меры против потери тепла являются обычной практикой в ​​странах с частыми холодами, где они применяются при строительстве новых зданий, а также при ремонте зданий.Старые здания обычно имеют гораздо более низкий уровень изоляции, чем новые, которые в странах ОЭСР обычно строятся в соответствии с последними требованиями к энергоэффективности. Остается большой технический потенциал для повышения уровня изоляции существующего жилого фонда с использованием отработанных технологий. Многие меры по изоляции также будут рентабельными из-за экономии затрат на электроэнергию.

В США, например, более 60% односемейных жилых домов оцениваются как «недостаточно изолированные», т.е.е. за счет повышения уровня изоляции домовладельцы могут сократить расходы, избежать выбросов парниковых газов и улучшить микроклимат в помещениях (Pew Center, 2009).

На рисунке 1 показаны потенциальная экономия энергии, затраты и препятствия для различных типов мер изоляции.

Общие препятствия, по которым эти меры не реализуются, включают: высокие начальные инвестиционные затраты, отсутствие вариантов финансирования для первоначальных инвестиций, время и усилия, необходимые для проведения мер по реконструкции в существующих зданиях, относительно длительный срок окупаемости некоторых мер, отсутствие знания и осведомленность, а также раздельные стимулы, i.е. Лица, принимающие решения, которые могут / должны принять решение об уровне изоляции в здании и оплатить более высокие первоначальные затраты, — это не те люди, которые извлекут выгоду из более низких затрат на энергию для отопления и / или охлаждения.

Правительства в различных регионах мира приняли меры по снижению этих барьеров, включая обязательные стандарты энергоэффективности, сертификацию зданий, добровольную маркировку и финансовые стимулы для стимулирования инвестиций в усиленную изоляцию и другие меры по энергосбережению в зданиях.Более того, правительства, гражданское общество и промышленные организации используют информационные кампании для повышения осведомленности и знаний о вариантах энергосбережения в зданиях. В ЕС Директива об энергетических характеристиках зданий (EPBD) является основной нормативной базой, предписывающей использование энергетических этикеток для европейских зданий. В других регионах, таких как США и некоторые азиатские страны, больше внимания уделяется сочетанию обязательного регулирования (например, Строительного кодекса по ведению переговоров об энергетике для коммерческих зданий в Индии) и добровольной маркировки (например,г. рейтинговая система домов, отвечающих требованиям Energy Star, США) (Levine et al., 2007).

Как технология может способствовать социально-экономическому развитию и охране окружающей среды

Изоляция приводит к экономии энергии, что снижает спрос на ископаемое топливо и связанные с ним выбросы парниковых газов и другие воздействия на окружающую среду. Подсчитано, что улучшение уровня изоляции существующего жилого фонда может снизить потребности в отоплении в два-четыре раза (Levine et al., 2007). В новых домах, построенных в соответствии с новейшими технологиями и дизайном в различных странах с холодным климатом, для отопления используется всего 10% энергии, чем в домах, построенных в соответствии с местными национальными строительными нормами и правилами (Levine et al., 2007).

Для стран с более мягкими зимами, где по-прежнему требуется отопление, как это имеет место во многих развивающихся странах, умеренный уровень изоляции по разумной цене уже может снизить потребности в отоплении более чем на половину от нынешнего уровня и, кроме того, может способствовать для снижения температуры в помещении летом (Levine et al., 2007). Если нет кондиционера, более низкие температуры летом улучшают комфорт в помещении или, если используется кондиционер, приводят к дополнительной экономии энергии.

Финансовые потребности и затраты

Инвестиционные затраты на изоляцию здания и связанная с этим экономия на энергозатратах играют важную роль в принятии решений об уровне изоляции в здании.

Однако часто домовладельцы не осведомлены об экономических преимуществах мер по изоляции.

В таблице 2 показаны средние сроки окупаемости мер по изоляции, добавленных к существующим зданиям в Нидерландах.

Тип изоляции:

Среднее время окупаемости

Изоляция полости стены

3 года

Другая изоляция стен (внутри / снаружи)

от 3 до 11 лет

Изоляция крыши

от 4 до 9 лет

Утеплитель пола

от 5 до 11 лет

Утеплитель окон

от 14 до 23 лет

Герметизация трещин

+/- 1 год

Таблица 2: Оценка среднего срока окупаемости мер по изоляции в Нидерландах (PRC Bouwcentrum, 2010)

Инвестиционные затраты и сроки окупаемости различных мероприятий по утеплению существенно различаются.Хотя в некоторых случаях инвестиционные затраты могут быть высокими, а срок окупаемости превышает 8 лет, другие меры по изоляции являются одними из наиболее экономичных вариантов снижения затрат на электроэнергию в зданиях и сокращения выбросов парниковых газов.

Статус рынка Механизма чистого развития

[Эта информация любезно предоставлена ​​UNEP Risoe Center Carbon Markets Group.]

Методология CDM AMS-II.E .: Меры по энергоэффективности и переходу на другой вид топлива для зданий открывают возможность включения проектов, которые улучшают изоляцию зданий в рамках CDM.По состоянию на январь 2011 года в портфеле МЧР находится 4 проекта, использующих эту методологию, один из которых был зарегистрирован и ССВ выданы.

Список литературы

  • Левин М., Д. Юрге-Форсац, К. Блок, Л. Генг, Д. Харви, С. Ланг, Г. Левермор, А. Монгамели Мехлвана, С. Мирагедис, А. Новикова, Дж. Риллинг, Х. Ёшино, (2007). Жилые и коммерческие здания. В изменении климата 2007: смягчение. Вклад Рабочей группы III в Четвертый доклад об оценке Межправительственной группы экспертов по изменению климата [Б.Мец, О. Дэвидсон, П. Р. Бош, Р. Дэйв, Л. А. Мейер (редакторы)], Cambridge University Press, Кембридж, Соединенное Королевство и Нью-Йорк, Нью-Йорк, США.
  • Центр Пью по глобальному изменению климата (2009 г.). Climate TechBook: Building Envelope. Доступно по адресу [1]
  • PRC Bouwcentrum (2010). Актуализация инвестиционных затрат на мероприятия по энергосбережению в существующих жилищах, март 2010 г.
  • WBCDS (2008). Энергоэффективность в зданиях — Реалии и возможности бизнеса. Доступно по адресу [2]

Принадлежность автора: Центр энергетических исследований Нидерландов (ECN), Политические исследования

Важность теплоизоляции жилых и коммерческих зданий

Опубликовано: мар.2017 | Id: BAE-1410

По
Р. Скотт Фрейзер

Если ранжировать преимущества различных энергетических проектов, выполненных для экономии затрат на энергию, в
здания, добавление утеплителя часто находится в верхней части списка. Единственные другие проекты
которые обычно приближаются к выгоде по сравнению с затратами, закрывают очень большие воздушные зазоры.
в доме.К счастью, многие проекты изоляции могут быть выполнены домовладельцем, если они
может и хочу вложить немного пота в капитал. В этом информационном бюллетене обсуждаются некоторые из основных
вопросы, которые следует изучить при рассмотрении проекта изоляции.

Основы изоляции

Основная идея использования строительной теплоизоляции достаточно проста для понимания.Любой
кто использовал пенопластовый холодильник для пикника, знает, что лед останется замороженным внутри
слой пены намного дольше, чем если бы он был просто в полиэтиленовом пакете. Пена сопротивляется
перемещение тепла из теплого снаружи холодильника в более холодный интерьер. Холодный
не убегает, потому что на самом деле нет ничего, что можно было бы идентифицировать как единое целое
из «холодного». Есть только тепло, а тепло всегда идет из мест, где больше тепла.
в места с меньшей температурой.Способность пены или любого материала сопротивляться движению.
тепла описывается его коэффициентом сопротивления теплопередаче, или значением «R».
Это значение R, которое можно увидеть на рулонах изоляции в строительном магазине. Как вы можете
представьте, что «R» имеет некоторые странные единицы: футы 2 · ° F · ч / британские тепловые единицы. В основном вы можете видеть, что R-значение исследует скорость, с которой движется тепло.
через стену или потолок.Более высокое значение «R» означает, что проходит меньше тепла.
через материал. Металл с хорошей проводимостью, такой как медь, будет иметь очень низкое значение сопротивления теплопередаче.
а изолятор, такой как пенопласт, будет иметь высокое значение R.

В некоторых строительных материалах вместо R.
просто инверсия «R» — значение, и оно показывает, насколько легко тепло может проходить через поверхность.Окна часто оцениваются по U-значению вместо R-значения, но концепция та же.
В этом информационном бюллетене используются R-значения.

Толщина изоляции

Изоляция обычно оценивается как имеющая определенное значение R на дюйм или некоторую заданную толщину.
например ¾ дюйма.Значение R увеличивается линейно или с постоянной скоростью по мере увеличения толщины.
увеличивается. Например, если один дюйм изоляционного материала из стекловолокна имеет R-значение
3,2, то два дюйма того же войлока из стекловолокна будут иметь значение R 6,4 и
вдвое больше изоляционной способности толщины в один дюйм. Различные изоляторы будут
имеют разные R-значения, и эти разные сопротивления могут складываться, если они многослойные
все вместе.Типичная стена может иметь облицовку из кирпича, пароизоляции, ДСП,
Утеплитель из стекловолокна, гипсокартон и даже слой лепнины / краски. Там бы
должно быть не менее 1 шести значений R, сложенных вместе, чтобы рассчитать общее значение R для этой стены
(см. рисунок 1). Толщина изоляции является одним из основных факторов, влияющих на качество материала.
способность противостоять тепловому движению.

Рисунок 1. Диаграмма, показывающая сэндвич-изоляцию стен из различных материалов с температурой
внутри (Tin) и температуры снаружи (Tout) в холодный день.

Изоляционный материал

Другим важным фактором способности конструкции удерживать тепло внутри или снаружи является фактическое
материал утеплитель.Интересно, что существует параллель между теплопроводностью и
электрическая проводимость. Такие металлы, как медь, являются отличными проводниками электричества и тепла.
Из большинства пластиков получаются хорошие электрические и теплоизоляторы. Мертвый воздух — хороший теплоизолятор
как вакуум (термос). Захваченные газы, такие как воздух или аргон, плохо нагреваются
проводники (хорошие изоляторы) и используются в некоторых окнах. Вся строительная изоляция
в какой-то степени использует это свойство.Изоляция из стекловолокна — это действительно воздух
между волокнами. Пенопласт, как с открытыми, так и с закрытыми порами, имеет крошечные пузырьки.
или проходы, которые задерживают воздух или газы и препятствуют тепловому движению.

Многие материалы были изучены, и их изоляционные свойства хорошо известны (Таблица
1).У разных материалов могут быть самые разные изоляционные свойства.

Если известно значение R, ожидаемые температуры и площадь стены или потолка,
количество тепла, которое пройдет за определенное время, можно рассчитать, используя
следующее уравнение:

Q = UA∆T или Q = (A∆T) / R, где: Q = движение тепла, A = площадь стены или потолка, ∆T = температура
отличие внутри и снаружи конструкции

Рассчитывается текущее движение тепла через стену и R-значение изоляции
изменяется на большее число (более толстый или другой материал) и пересчитывается.В
разница в теплопередаче — это количество энергии, сэкономленное от нагревателя или
кондиционер, поддерживающий такую ​​же температуру. Это в основном то, как энергоаудит
программное обеспечение прогнозирует экономию энергии и связанных с этим затрат от добавления изоляции в
здание. Таким же образом подрядчик должен определять размер отопления и
охлаждающее оборудование для здания. Давайте посмотрим на расчет, сравнивающий старые, устоявшиеся
изоляция по сравнению с новыми ватными покрытиями из стекловолокна на чердаке:

Пример: Изолированный потолок на чердаке без кондиционирования, 1500 кв. Футов, старая изоляция на ½-дюймовой фанере.
(R = 0.62).

  • Начальные условия (отопительный сезон): Старая ячеистая изоляция установлена ​​на R = 7, всего
    потолок R = 7,62
  • Q = UA∆T или Q = (A∆T) / R Где: Q = движение тепла, A = площадь стены или потолка, ∆T = температура
    разница внутри и снаружи
  • Площадь 1 500 квадратных футов стекловолокна толщиной 1 дюйм, 70F внутри и 30F снаружи
    (чердак)
  • Q = (1500 квадратных футов x 40F) / 7.62 = 7 874 БТЕ / час
  • Заменить стекловолокном (R-32), 70F внутри и 30F снаружи
  • Qnew = (1500 квадратных футов x 40 футов) / (32,62) = 1839 британских тепловых единиц / час

Обратите внимание, что добавленная изоляция немедленно снизила потери тепла на 300 процентов (7 874 БТЕ / час
до 1839 БТЕ / час).Если это представляет собой всю конструкцию дома, включая стены,
Счета за отопление фактически снизятся до четверти по сравнению с предыдущими. Этот
показывает важность изоляции. Если толщина изоляции изменяется в
В приведенном выше примере быстро достигается точка, когда все больше и больше изоляции не обеспечивает
такие большие скачки в экономии энергии. Это означает, что в какой-то момент покупать больше
изоляция не помогает, но от 90 до 95 процентов преимуществ было достигнуто
не тратя больше.

Если этот пример используется для получения тепла летом с чердаком 120 F:

  • Qold = 9842 БТЕ / час (тепловыделение, с которым должен бороться кондиционер)
  • Qnew = 2299 БТЕ / час
  • Q Разница = 7543 БТЕ / час (это более полутонны охлаждения, которая сейчас не требуется)

Для типичного сезона отопления и охлаждения в Оклахоме это экономия затрат на отопление.
около 130 долларов в год и экономия на охлаждении около 235 долларов в год2.Через 20 лет
Период, это экономия 7300 долларов — только на улучшение теплоизоляции чердака. Если домовладелец
сам этот проект, а материалы стоят 1500 долларов, окупаемость составит около
4 года, что хорошо для проекта по благоустройству дома. Убедитесь, что изоляция в
остальная часть дома в хорошем состоянии (стены, двери, окна), и экономия могла бы быть выше.

Таблица 1. Изоляционные свойства различных материалов (Министерство энергетики США).

Тип материала R-стоимость Стоимость квадратного фута Стоимость квадратного фута за R-ценность
Стекловолокно 13 0 руб.От 20 до 0,40 долл. США 0,02
(толщина от 3,5 до 12 дюймов) 30 0,60–1,00 долл. США 0,03
Сыпучий наполнитель, например стекловолокно, целлюлоза и минеральная вата 30 0 руб.45 к 1,35 долл. США 0,03
(толщина от 8 до 23 дюймов) 50 0,75–2,25 $
Пенополиуритан с открытыми ячейками (толщиной 3,5 дюйма) 12,6 $ 1.От 70 до 2,50 долл. США 0,17
Пенополиуритан с закрытыми ячейками (толщиной 1 дюйм) 6.5 1,3–2,00 долл. США 0,25
Пенополистирол (толщина 1 дюйм) 3,8 — 4,4 0 руб.От 20 до 0,35 доллара США 0,07
Панель из экструдированного пенополистирола (толщиной 1 дюйм) 5 0,40–0,55 долл. США 0,1
Плита из вспененного полиизоцианурата (толщиной 1 дюйм) 6.5 0 руб.60–0,70 долл. США 0,1
Хлопок 3,5 0,12–0,22 доллара США 0,05
Минеральная вата, минеральная вата 4 0,18–0,33 долл. США 0.06

Движение водяного пара

Помимо контроля температуры, внутренний комфорт конструкции зависит от
в некоторой степени от способности контролировать движение влаги и влажности через
структура. Здания испытывают внутренние водные нагрузки из-за душа, приготовления пищи, покраски.
и люди.Этот водяной пар (вместе с другими парами и парами) должен покинуть
строительство в какой-то степени. Во внешней среде может быть более высокая концентрация водяного пара.
В этом случае пар будет пытаться проникнуть в здание. Высокая влажность в
интерьер зданий может привести к проблемам со здоровьем и комфортом. Это также может облегчить
рост плесени в интерьере здания.

Некоторые из описанных здесь изоляционных материалов могут действовать как пароизоляционные
движение воды.Другие просто замедляют движение воды (полупроницаемость) и
некоторые позволяют влаге проходить непосредственно через изоляцию. Правильное размещение пара
барьеры зависят от местного климата и внутреннего использования здания. Всегда консультируйтесь с профессионалом
при установке пароизоляции. Как правило, установка утеплителя не рекомендуется.
с пароизоляцией в здании, в котором уже есть пароизоляция, потому что это может
задерживают влагу между слоями строительных материалов, где она может разрушить стены и потолки.

Типы изоляции и стоимость

Потребителю или подрядчику доступны различные изоляционные материалы.
У каждого есть свои плюсы и минусы. Разберем несколько типов изоляционных материалов.

Стекловолокно: Этот материал существует уже некоторое время.Это относительно недорого, а
домовладельцы могут установить это сами. Проблема в том, что его нужно разрезать на очень
точные детали и формы, чтобы покрыть область, которую он пытается изолировать. Это может стать
довольно утомительно для пространств необычной формы и углов вокруг деревянных балок. Летучие мыши должны
плотно укладывается во все помещения — протечек нет. Установить утеплитель из стеклопластика несложно,
но это может быть зудящая, горячая работа.За несколько лет стекловолокно может осесть и отслоиться.
его начальное значение R составляет примерно 3,5 на дюйм толщины. Из таблицы 1 мы видим
что стеклопластиковые войлоки являются одним из наименее дорогих способов обеспечить изоляцию (при
во-первых) примерно по цене 0,02–0,05 доллара за R-ценность.

Cellulous: Этот материал часто представляет собой просто мелко измельченную газету.Материал просто выдувается
свободно в пространство, где это необходимо (чердак или стены). Обычно это не
домовладельца, потому что требуется специальное оборудование для доставки материала через
воздуходувка и шланги. Цена на изоляцию низкая, в зависимости от
поставщик (приблизительно 0,04 доллара США за R-стоимость на квадратный фут). Один из целлюлозных
Преимущество заключается в том, что мелкие частицы имеют тенденцию закупоривать утечки воздуха в местах необычной формы.Время установки может составлять несколько минут после того, как все настроено, просто взорвите
материал в чердак на нужную глубину. Некоторые недостатки рыхлой целлюлозы
включают: Неосторожное нанесение может привести к тому, что измельченный материал может покрыть различные необходимые
форточки на чердаке (софит и др.). Сильный ветер может сдвинуть изоляцию и уйти
большие неизолированные площади потолка (решают заборы вокруг форточки).Материал
подлежит заселению. Значительная часть R-ценности изоляции связана с ее толщиной.
и воздух внутри. Поскольку изоляция оседает и становится более тонким слоем с
со временем его R-значение падает. Сыпучая целлюлоза очень подвержена такому осаждению и
необходимо проверять каждые несколько лет.

Пенопласт с закрытыми порами: В последние десятилетия набирает популярность изоляционная пена, наносимая распылением.Пена распыляется
на поверхности расширяется и затвердевает, затем обрабатывается и покрывается различными покрытиями
(или оставлен открытым). При правильном нанесении пена полностью закроет практически любую поверхность.
и может легко наноситься на нижнюю сторону поверхностей. R-значение закрытой ячейки
пена довольно высока на дюйм изоляции — около 6,5 на дюйм. Это очень привлекательно
преимущества, так как движение воздуха снаружи эффективно останавливается.Это означает влажность,
или водяного пара, движение в пространство также прекращается. Приложение довольно быстрое
после настройки. К недостаткам можно отнести высокую начальную стоимость примерно втрое больше.
чем изоляция из стекловолокна (около 0,16-0,25 доллара за R-значение на квадратный фут).
Некоторые из более тонких проблем включают в себя то, что под пеной полностью
инкапсулированы и склеены.Например, проводку нужно выкопать из пенопласта, чтобы
работать. Пена также может скрыть повреждения от воды, которые в противном случае могли бы быть
пятнистый3.

Пена с открытыми порами: Это очень похоже на пену с закрытыми порами, но отличается тем, что маленькие пузырьки в
пены открыты друг другу.Это снижает значение R примерно до 4,2 на дюйм и
позволяет влаге проходить через материал. Как правило, стоимость пенопласта с открытыми порами
примерно вдвое меньше пены с закрытыми порами. Приложение очень похоже на закрытую ячейку
как и некоторые из преимуществ и недостатков. Пена — хороший выбор, если хочется
превратить чердачное помещение в жилое. Необычные формы поверхностей на чердаке
относительно легко герметизируются при нанесении распылением.

Пенопласт: Эти готовые плиты могут иметь высокие значения теплоизоляции (R). Их довольно легко
обрабатывать и устанавливать, и, безусловно, заслуживают внимания домовладельца, желающего
попробовать установить утеплитель самостоятельно. Однако их стоимость, как правило, выше, чем
рыхлая целлюлоза, стекловолокно или пена для распыления.

Полиизоциануратная плита (ISO): Это предварительно изготовленная плита из жесткого пенопласта, обычно с алюминиевой бумажной основой. ISO
или плата PIR имеет очень высокое значение R — примерно от 6,2 до 7,2 на дюйм толщины. Цена
является относительно высоким и соответствует некоторым аэрозольным пенам по цене в долларах за R-ценность.
Некоторые из преимуществ платы PIR заключаются в том, что она относительно компактна на количество
изоляция.Благодаря выступам ISO легко обращаться и прикреплять к вертикальным поверхностям. ISO
не выделяет много пыли, и установка достаточно чиста для такой операции.
Этот материал — хороший кандидат для рукодельниц. С другой стороны, как стекловолокно
войлок, точные геометрические детали должны быть вырезаны, чтобы заполнить пустоты и сделать пробелы устойчивыми
к воздушному потоку. При правильной установке материал ISO может действовать как пароизоляция.

Пенополистирол (EPS): Это жесткий пенополистирол, но без основы. Эту плату часто используют в утепленных
бетонные формы. Подумайте о недорогом охладителе из белой пены или чашке для кофе, и это будет
наверное ЭПС. Материал обладает хорошими изоляционными свойствами (коэффициент сопротивления R составляет 4 дюйма на дюйм).
толщины), однако платы довольно дорогие.Доски легко ломаются
при неправильном обращении. Как правило, плиты EPS поглощают и пропускают водяной пар.
через. Поэтому они не считаются пароизоляцией. Платы EPS
самый дешевый из готовых пенопластов.

Экструдированный пенополистирол (XPS): Прочнее пенополистирола и также является пенопластом.Этот материал может иметь или не иметь
облицовка. Коэффициент R, равный 5 на дюйм изоляции, помещает его между плитами EPS и ISO.
в его способности к термическому сопротивлению. Этот материал замедляет, но не останавливает воду
пар от прохождения, следовательно, это не пароизоляция, а пароизоляция. В
Плата XPS также имеет тенденцию быть дорогостоящей (около 0,23 доллара за R-value за установленный квадратный фут).

Другие изоляционные материалы: На рынке иногда встречается множество других изоляционных материалов.В качестве утеплителя здания можно использовать хлопок, овечью шерсть, минеральную вату и различные пластмассы.
Это нечасто, и у домовладельца, вероятно, возникнут проблемы с поиском подрядчика.
установить эти материалы.

Сводка

Изоляция — очень простая мера энергоэффективности.Старые дома с небольшим количеством или без
изоляция может значительно выиграть от добавления изоляции. Существующие дома с
стекловолокно или рыхлая осевшая клетчатка могут выиграть от дополнительной теплоизоляции
чтобы восстановить толщину (и R-значение). Изоляция, например, проникновение избыточного воздуха,
это основная мера по энергоэффективности / энергосбережению, которую следует решить в первую очередь, прежде чем
пробуются любые другие, более интересные и дорогие проекты.Окупаемость могла
стоит затраченных усилий.

Артикулы:

Руководство по утеплению дома

Какую жесткую изоляцию выбрать?

р.Скотт Фрейзер, PhD, PE, CEM
, специалист по энергетике штата Оклахома

Была ли эта информация полезной?

ДА НЕТ

Теплоизоляция для зданий, трубопроводов и механического оборудования | 2019-01-31

Теплоизоляция — это натуральный или искусственный материал, который замедляет или замедляет прохождение тепла. Изготовленные изоляционные материалы могут замедлять передачу тепла к стенам, трубам или оборудованию или от них, и их можно адаптировать ко многим формам и поверхностям, таким как стены, трубы, резервуары или оборудование.Изоляция также производится в виде жестких или гибких листов, гибких волокнистых войлок, гранулированного наполнителя или пенопласта с открытыми или закрытыми порами. Различные виды отделки используются для защиты изоляции от физических повреждений и повреждений окружающей среды, а также для улучшения внешнего вида изоляции.

Археология показала, что доисторические люди использовали различные природные материалы в качестве изоляции. Они одевались или покрывались мехами животных, шерстью и шкурами животных; построенные дома из дерева, камня и земли; и использовали другие натуральные материалы, такие как солома или другие органические материалы, для защиты от холода зимой и жары летом.

В средние века, в более холодном северном климате, стены были набиты соломой. Грязевую штукатурку смешивали с соломой, чтобы не допустить холода. Гобелены вешали на стены замков или дворцов, чтобы избежать сквозняков между камнями, поскольку большие конструкции могли оседать и сдвигаться под тяжестью стен. Старые здания, вероятно, были холодными и сквозняками без изоляции и герметиков от сквозняков.

Изоляция развивалась очень медленно до 1932 года, когда процесс создания стекловолокна был открыт случайно.Первые тонкие стекловолокна, называемые минеральной ватой, были произведены в 1870 году изобретателем по имени Джон Плейер. Сначала он не считал волокна минеральной ваты изоляционным материалом; он подумал, что это может быть новая ткань, из которой можно сшить теплую одежду. На Всемирной выставке 1893 года Игрок представил платье из минеральной ваты из стекловолокна.

Только 45 лет спустя, в 1938 году, компания Owens Corning Co. из Толедо, штат Огайо, произвела первую изоляцию из стекловолокна. Из этого материала изготавливали одеяла (так называемые «войлоки»), и компания начала продавать его, чтобы сделать здания более эффективными и удобными.

Изоляция из стекловолокна быстро стала основным методом изоляции домов и зданий на рынке. Изоляцию из стекловолокна нужно было разрезать или разорвать на крошечные кусочки, чтобы уложить в стены странной формы достаточно плотно, чтобы предотвратить образование пустот или сквозняков, которые уменьшили бы изолирующий эффект материала.

Стекловолокно также используется с бумажной или пластиковой оболочкой для изоляции трубы. При изоляции холодной трубы важно использовать пароизоляцию на изоляции и заклеивать стыки лентой, чтобы предотвратить проникновение влаги и выпотевание конденсата в изоляции.Влажная изоляция позволяет более эффективно передавать тепло.

Любое здание, будь то дом или офис, должно быть хорошо изолировано. Лучшим решением с точки зрения стоимости и производительности может быть сочетание двух или более различных изоляционных материалов, каждый из которых используется там и тогда, когда он может предложить лучшие аспекты своих характеристик. Как правило, ограждающая оболочка здания утеплена архитектурным утеплителем; трубопроводы и механические системы также изолированы.

Добавление утеплителя — очень важная часть любого строительного проекта, и его эффекты практически незаметны.Изоляция будет снижать ежемесячные счета за отопление и охлаждение и уменьшать глобальное потепление, связанное со зданием. Правильная изоляция оболочки здания важна для предотвращения замерзания труб, а также повреждения здания льдом или влагой.

Как правило, водопроводные трубы не следует прокладывать в наружных стенах. Однако в некоторых случаях водопроводная труба может быть установлена ​​в наружных стенах, если изоляция ограждающей конструкции здания адекватна и установлена ​​на внешней стороне водопроводной трубы, а также предусмотрены соответствующие меры по нагреву или меры предосторожности, чтобы гарантировать, что трубопровод не замерзнет.

Общие сведения о тепловом потоке / теплопередаче

Чтобы понять, как работает изоляция, важно понимать концепцию теплового потока или теплопередачи. Как правило, тепло всегда течет от более теплых поверхностей к более холодным. Этот поток не прекращается, пока температура на двух поверхностях не станет равной. Тепло «передается» тремя различными способами: теплопроводностью, конвекцией и излучением. Изоляция снижает передачу тепла.

1. Проводимость теплового потока. Проводимость — это прямой поток тепла через твердые тела. Это результат физического контакта одного объекта с другим. Тепло передается молекулярным движением. Молекулы передают свою энергию соседним молекулам с меньшим теплосодержанием, движение которых увеличивается.

2. Конвекционный тепловой поток. Конвекция — это поток тепла (принудительный и естественный) в жидкости. Жидкость — это вещество, которое может быть газом или жидкостью. Движение теплоносителя или воздуха происходит либо за счет естественной конвекции, либо за счет принудительной конвекции, как в случае печи с принудительной подачей воздуха.

3. Радиационный тепловой поток. Радиация — это передача энергии через пространство с помощью электромагнитных волн. Излученное тепло движется по воздуху со скоростью света, не нагревая пространство между поверхностями.

Сравнение типов изоляции

Поскольку существует так много различий в применениях и продуктах для изоляции труб, сложно проводить общие сравнения между различными типами изоляции. Наилучшая изоляция труб для любой конкретной работы во многом определяется конкретными особенностями применения, а не преимуществами продукта.

Вот некоторые параметры применения, которые следует учитывать при каждой установке изоляции: Температура процесса; Сопротивление сжатию или R-значение; Коррозия; pH; Огнестойкость; и проницаемость для водяного пара.

Изоляция

обычно используется для одной или нескольких из следующих функций: уменьшение потерь тепла или притока тепла для достижения энергосбережения; Повышение эффективности работы систем вентиляции и кондиционирования, водопровода, пара, технологических и энергетических систем; Температуры контрольных поверхностей для защиты персонала и оборудования; Контроль температуры коммерческих и промышленных процессов; Предотвратить или уменьшить образование конденсата на поверхностях; Предотвратить или уменьшить повреждение оборудования от воздействия огня или агрессивной атмосферы; Помогать механическим системам соответствовать критериям USDA (FDA) на пищевых и фармацевтических предприятиях; Уменьшить шум от механических систем; и Защита окружающей среды за счет сокращения выбросов CO 2 , NOx и парниковых газов.

Изоляционные материалы для механических труб и оборудования могут использоваться для изоляции от потерь или увеличения тепла, а также для защиты персонала от высокотемпературных систем, которые могут вызвать травмы (например, ожоги) в случае прикосновения к высокотемпературной трубе или воздействия на нее. Изоляция используется в механических системах внутри и снаружи помещений. Он используется в наружных стенах здания, чтобы обеспечить сопротивление теплопередаче через внешние стены здания, чтобы уменьшить энергию, необходимую для обогрева или охлаждения здания.

Сама по себе изоляция не предотвратит замерзание; он просто замедляет передачу тепла. Поэтому внутри изоляционной оболочки здания должен быть предусмотрен источник тепла для предотвращения замерзания. Иногда в системах трубопроводов используется обогрев, чтобы предотвратить замерзание; однако в большинстве случаев для обогрева трубопроводов требуется более толстая изоляция, чем обычно, чтобы минимизировать электрические требования.

Если вы используете обогреватель в своей конструкции, будьте осторожны, чтобы не допустить снижения толщины изоляции в результате инженерных расчетов, иначе обогрев может не работать должным образом.Уточните у производителя системы электрообогрева надлежащий тип и толщину изоляции, чтобы избежать гарантийных проблем с установкой.

Использование дополнительной механической изоляции труб и оборудования — это самый простой способ снизить энергопотребление систем охлаждения и отопления зданий, систем горячего водоснабжения и холодоснабжения, а также систем охлаждения, включая воздуховоды и кожухи. В какой-то момент добавление дополнительной изоляции было бы слишком дорогостоящим; однако в течение всего срока службы здания можно сэкономить значительную энергию или деньги, увеличив толщину изоляции в большинстве случаев.

Здания застройщика обычно имеют минимальную изоляцию на отводных трубопроводах или вообще не имеют ее, потому что застройщики хотят построить здание как можно дешевле и продать его кому-то еще, кто в конечном итоге оплатит счета за коммунальные услуги. Программы энергосбережения должны решать эту проблему, создавая стимулы для правильного проектирования и установки.

На промышленных объектах, таких как электростанции, нефтеперерабатывающие заводы и бумажные фабрики, механическая теплоизоляция устанавливается для контроля притока или потерь тепла на технологических трубопроводах и оборудовании, системах распределения пара и конденсата, котлах, дымовых трубах, камерах с рукавами и пылеуловителях, а также резервуары для хранения.Эти изоляционные материалы обычно используются для защиты персонала и для поддержания стабильной среды на заводе или рабочем месте.

Преимущества изоляции

1. Экономия энергии. Значительное количество тепловой энергии ежедневно теряется на промышленных предприятиях по всей стране из-за недостаточно изолированных, недостаточно обслуживаемых или неизолированных обогреваемых и охлаждаемых поверхностей. Правильно спроектированные и установленные системы изоляции сразу же снизят потребность в энергии.Выгоды для промышленности включают огромную экономию затрат, повышение производительности и улучшение качества окружающей среды.

2. Управление технологической теплопередачей. За счет уменьшения потерь или тепловыделения изоляция может помочь поддерживать температуру технологического процесса на заданном уровне или в заданном диапазоне. Опять же, сама по себе изоляция не предотвратит замерзание. Изоляция должна работать с источником тепла для защиты от замерзания. Толщина изоляции должна быть достаточной для ограничения теплопередачи в динамической системе или ограничения изменения температуры со временем в статической системе.Необходимость предоставить владельцам время для принятия мер по исправлению положения в чрезвычайных ситуациях в случае потери электроэнергии или источников тепла является основной причиной таких действий в статической или непроточной системе воды для предотвращения замерзания.

3. Контроль конденсации. Определение достаточной толщины изоляции и эффективной пароизоляционной системы или изоляционной оболочки — наиболее эффективные средства контроля конденсации на поверхности мембраны и внутри системы изоляции на холодных трубах, воздуховодах, охладителях и водостоках.

Достаточная толщина изоляции необходима для поддержания температуры поверхности мембраны выше максимально возможной расчетной температуры точки росы окружающего воздуха в здании, чтобы конденсат не образовывался на поверхности трубы или изоляции и не капал на потолок или пол под ним. . Для ограничения миграции влаги в систему изоляции через облицовку, стыки, швы, проходы, подвесы и опоры необходимы эффективные замедлители образования паров или система изоляционной оболочки.

Контролируя конденсацию, разработчик системы может контролировать возможность: снижения срока службы и производительности системы; Рост плесени и возможность проблем со здоровьем из-за водяного конденсата; и Коррозия труб, клапанов и фитингов, вызванная водой, собранной и содержащейся в системе изоляции.

4. Защита персонала. Теплоизоляция — одно из наиболее эффективных средств защиты рабочих от ожогов второй и третьей степени в результате контакта кожи в течение более пяти секунд с поверхностями горячих трубопроводов и оборудования, работающего при температурах выше 136 ° С.4 F (согласно ASTM C 1055). Изоляция снижает температуру поверхности трубопроводов или оборудования до более безопасного уровня, требуемого OSHA, что приводит к повышению безопасности рабочих и предотвращению простоев рабочих из-за травм.

5. Противопожарная защита. Изоляция, используемая в сочетании с другими источниками тепла и материалами, обеспечивает защиту от огня. Он часто используется в трубных рукавах или отверстиях с сердечником в противопожарных преградах с противопожарными системами, предназначенными для обеспечения эффективного барьера против распространения пламени, дыма и газов при проникновении в огнестойкие сборки по каналам, трубам, электрическим или коммуникационным кабелям.

Смазочные каналы могут загореться и раскалиться до докрасна до тех пор, пока жир не выгорит или огонь не будет потушен. Изоляционные материалы на каналах для смазки предотвращают распространение огня на соседние горючие строительные материалы. Изоляция часто используется в рукавах кабелепровода или отверстиях противопожарных барьеров с противопожарными системами, предназначенными для обеспечения эффективного барьера от распространения пламени, дыма и газов для защиты электрических и коммуникационных каналов и кабелей от проникновения.

Промышленная изоляция обычно имеет классификацию пожарной опасности 25/50 для 1 дюйма.толщина и ниже при испытании в соответствии с ASTM E-84 (Стандартный метод испытания характеристик горения поверхности строительных материалов). Однако характеристики горения изоляционной поверхности значительно отличаются от одного продукта к другому, и их следует учитывать при выборе продукта для конкретного применения.

ASTM предупреждает пользователей любого из своих стандартов, что метод испытаний может не указывать на фактические пожарные ситуации. ASTM E-84 (испытание в туннеле Штайнера) является наиболее часто упоминаемой спецификацией на рынках промышленного и коммерческого строительства.На него часто ссылаются, даже если код построения модели этого не требует.

Туннельное испытание Штайнера — широко используемый метод тестирования внутренней отделки стен и потолка зданий на их способность поддерживать и распространять огонь, а также на их склонность к дыму. Тест был разработан в 1944 году Аль Штайнером из Underwriters Laboratories. Этот тест, который измеряет распространение пламени и образование дыма, был включен в качестве ссылки в североамериканские стандарты для испытаний материалов, такие как тесты ASTM E84, NFPA 255, UL 723 и ULC S102.Эти стандарты широко используются для регулирования и выбора материалов для внутреннего строительства зданий по всей Северной Америке.

Другими маломасштабными методами испытаний, на которые иногда ссылаются, являются ASTM E162 (испытание излучающей панелью) и ASTM E-662 (испытание плотности дыма NBS). К ним чаще всего обращаются при использовании общественного транспорта и напольных покрытий. UL 94 может требоваться для корпусов бытовых приборов и оборудования.

6. Шумоподавление. Изоляционные материалы могут использоваться в конструкции узла с высокими потерями при передаче звука, который должен быть установлен между источником и окружающей средой.Иногда изоляция с высокими характеристиками звукопоглощения может использоваться на стороне источника шума, чтобы помочь снизить воздействие шума на людей в областях непосредственно вокруг источника шума путем поглощения, тем самым способствуя снижению уровня шума на другой стороне. корпуса.

7. Эстетика. Большинство систем механической изоляции в коммерческом строительстве обычно не видны жителям здания. Общие исключения из этого находятся в помещениях с механическим оборудованием, где нагревательное оборудование, охлаждающее оборудование и связанные с ним трубопроводы видны персоналу, который работает или иным образом должен иметь доступ к этим областям.

Обычно требуется, чтобы изоляционные поверхности, видимые внутри оболочки здания, имели законченный и аккуратный внешний вид. Эти поверхности также могут быть окрашены или покрыты для более приемлемого внешнего вида в больницах, школах, супермаркетах, ресторанах и даже на промышленных предприятиях в пищевой промышленности и производстве компьютерных компонентов, где они видны жильцам.

8. Сокращение выбросов парниковых газов. Теплоизоляция для механических систем обеспечивает сокращение выбросов CO2, NOx и парниковых газов в окружающую среду в дымовых или дымовых газах за счет снижения расхода топлива, необходимого на участках сжигания, поскольку система получает или теряет меньше тепла.

Характеристики изоляции

Изоляция

имеет различные свойства и ограничения в зависимости от услуги, местоположения и требуемого срока службы. Это следует учитывать инженерам или владельцам при рассмотрении потребностей в изоляции промышленного или коммерческого применения.

1. Тепловое сопротивление (R) (F ft2 h / BTU). Величина, определяемая разницей температур в установившемся режиме между двумя заданными поверхностями материала или конструкции, которая вызывает единичный тепловой поток через единицу площади.Сопротивление, связанное с материалом, должно быть указано как материал R. Сопротивление, связанное с системой или конструкцией, должно быть указано как система R.

2. Кажущаяся теплопроводность (ка) (БТЕ дюйм / ч фут2 F). Теплопроводность, приписываемая материалу, демонстрирующему теплопередачу в нескольких режимах теплопередачи, что приводит к изменению свойств в зависимости от толщины образца или коэффициента излучения поверхности.

3. Теплопроводность (k) (BTU in./ ч фут2 F). Скорость установившегося теплового потока через единицу площади однородного материала, вызванного единичным градиентом температуры в направлении, перпендикулярном этой единице площади. Материалы с более низким коэффициентом k являются лучшими изоляторами.

4. Плотность (фунт / фут3) (кг / м3). Это вес определенного объема материала, измеряемый в фунтах на кубический фут (килограммы на кубический метр).

5. Характеристики горения поверхности. Это сравнительные измерения распространения пламени и дымообразования с отборными красными дубовыми плитами и неорганическими цементными плитами. Результаты этого испытания могут использоваться как элементы оценки пожарного риска, которая учитывает все факторы, имеющие отношение к оценке пожарной опасности или пожарного риска для конкретного конечного использования.

6. Сопротивление сжатию. Это показатель устойчивости материала к деформации (уменьшению толщины) под действием сжимающей нагрузки.Это важно, когда к монтажу изоляции прилагаются внешние нагрузки.

Два примера — это деформация изоляции трубы на подвесе типа Clevis из-за совокупного веса трубы и ее содержимого между подвесками и сопротивление изоляции сжатию в прямоугольном воздуховоде вне помещения из-за больших механических нагрузок от внешних источников. например, ветер, снег или случайное пешеходное движение.

7. Термическое расширение / сжатие и стабильность размеров. Системы изоляции устанавливаются в условиях окружающей среды, которые могут отличаться от условий эксплуатации. При наложении условий эксплуатации металлические поверхности могут расширяться или сжиматься иначе, чем применяемая изоляция и отделка. Это может привести к образованию отверстий и параллельных путей теплового потока и потока влаги, которые могут снизить производительность системы.

Для долгосрочной удовлетворительной службы необходимо, чтобы изоляционные материалы, закрывающие материалы, облицовка, покрытия и аксессуары выдерживали суровые условия температуры, вибрации, неправильного обращения и условий окружающей среды без неблагоприятной потери размеров.

8. Паропроницаемость. Это скорость прохождения водяного пара через единицу площади плоского материала единичной толщины, вызванная разницей единичного давления пара между двумя конкретными поверхностями при заданных условиях температуры и влажности. Это важно, когда системы изоляции будут работать при рабочих температурах ниже температуры окружающего воздуха. В этой службе необходимы материалы и системы с низкой паропроницаемостью.

9.Возможность очистки. Способность материала мыть или иным образом очищать для сохранения его внешнего вида.

10. Термостойкость. Способность материала выполнять предназначенную функцию после воздействия высоких и низких температур, с которыми материал может столкнуться при нормальном использовании. Сама по себе изоляция не предотвратит замерзание. Для предотвращения замерзания необходимо использовать дополнительный источник тепла с правильным выбором типа и толщины изоляции.

11. Атмосферостойкость. Способность материала подвергаться длительному воздействию на открытом воздухе без значительной потери механических свойств. Необходимо использовать дополнительный источник тепла с надлежащим типом изоляции и выбранной изоляцией для предотвращения замерзания.

12. Сопротивление злоупотреблениям. Способность материала подвергаться в течение продолжительных периодов нормальному физическому насилию без значительной деформации или проколов.

13. Температура окружающей среды. Температура окружающего воздуха по сухому термометру при защите от любых источников падающего излучения.

14. Коррозионная стойкость. Способность материала подвергаться длительному воздействию агрессивной среды без значительного начала коррозии и, как следствие, потери механических свойств.

15. Огнестойкость / выносливость. Способность изоляционного узла, подвергаемого определенному периоду воздействия тепла и пламени (огня), только с ограниченной и измеримой потерей механических свойств.Огнестойкость не является сравнительной характеристикой горения поверхности изоляционных материалов.

16. Устойчивость к росту грибков. Способность материала постоянно находиться во влажных условиях без роста плесени или плесени.

Типы и формы изоляции

Типы массовой изоляции включают волокнистую изоляцию. Он состоит из воздуха, тонко разделенного на промежутки волокнами малого диаметра, обычно связанными химическим или механическим способом и сформированными в виде плит, одеял и полых цилиндров: стекловолокна или минерального волокна; минеральная вата или минеральное волокно; тугоплавкое керамическое волокно; и ячеистая изоляция.

Он состоит из воздуха или другого газа, содержащегося в пене из устойчивых мелких пузырьков и сформированных в виде досок, одеял или полых цилиндров: пеностекло; эластомерная пена; фенольная пена; полиэтилен; полиизоцианураты; полистирол; полиуретаны; полиимиды; и гранулированный утеплитель.

Он также состоит из воздуха или другого газа в промежутках между небольшими гранулами и сформирован в виде блоков, плит или полых цилиндров: силикат кальция; изоляционный финишный цемент; и перлит.

Жесткая или полужесткая самонесущая изоляция имеет прямоугольную или изогнутую форму: силикат кальция; стекловолокно или минеральное волокно; минеральная вата или минеральное волокно; полиизоцианураты; полистирол; и блокировать.

Жесткая изоляция имеет прямоугольную форму: силикат кальция; пеностекло; минеральная вата или минеральное волокно; перлит; и лист. Полужесткая изоляция формируется в виде прямоугольных кусков или рулонов: стекловолокна или минерального волокна; эластомерная пена; минеральная вата или минеральное волокно; полиуретан; и гибкие волокнистые одеяла.

Гибкая изоляция используется для обертывания различных форм и форм: стекловолокно или минеральное волокно; минеральная вата или минеральное волокно; тугоплавкое керамическое волокно; изоляция труб и фитингов.

Предварительно сформированная изоляция используется для крепления трубопроводов, насосно-компрессорных труб и фитингов: силикат кальция; пеностекло; эластомерная пена; стекловолокно или минеральное волокно; минеральная вата или минеральное волокно; перлит; фенольная пена; полиэтилен; полиизоцианураты; полиуретаны; и пена.

Изоляционные покрытия

Жидкость можно смешивать во время нанесения, которая расширяется и затвердевает для изоляции неровностей и пустот: полиизоцианураты; полиуретан; и изоляция, нанесенная распылением.Жидкие связующие вещества или вода вводятся в изоляцию при распылении на плоские или неровные поверхности для обеспечения огнестойкости, контроля конденсации, акустической коррекции и теплоизоляции: минеральная вата или минеральное волокно; и насыпь.

Гранулированный утеплитель применяется для заливки компенсаторов: минеральная вата или минеральное волокно; перлит; вермикулит; и цементы (изоляционные и отделочные растворы). Производится с изоляцией из минеральной ваты и глины, цементы могут быть гидравлического схватывания или воздушной сушки: эластичный пенопласт.

Листы пенопласта и изоляция трубок содержат вулканизированную резину. Выбор подходящего типа и толщины изоляции сделает счастливого владельца здания меньшими счетами за электроэнергию и счастливого арендатора с комфортными условиями в здании.

Previous PostNextNext Post

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *