Какие материалы обладающие малой теплопроводностью вы знаете: 1. Какие материалы, обладающие малой теплопроводностью, вы знаете? Какие их них используются

Какие материалы обладающие малой теплопроводностью вы знаете: 1. Какие материалы, обладающие малой теплопроводностью, вы знаете? Какие их них используются

Содержание

Теплопроводность строительных материалов, их плотность и теплоемкость: таблица теплопроводности материалов

ABS (АБС пластик)1030…10600.13…0.221300…2300
Аглопоритобетон и бетон на топливных (котельных) шлаках1000…18000.29…0.7840
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—721100…12000.21
Альфоль20…400.118…0.135
Алюминий (ГОСТ 22233-83)2600221897
Асбест волокнистый4700.161050
Асбестоцемент1500…19001.761500
Асбестоцементный лист16000.41500
Асбозурит400…6500.14…0.19
Асбослюда450…6200.13…0.15
Асботекстолит Г ( ГОСТ 5-78)1500…17001670
Асботермит5000. 116…0.14
Асбошифер с высоким содержанием асбеста18000.17…0.35
Асбошифер с 10-50% асбеста18000.64…0.52
Асбоцемент войлочный1440.078
Асфальт1100…21100.71700…2100
Асфальтобетон (ГОСТ 9128-84)21001.051680
Асфальт в полах0.8
Ацеталь (полиацеталь, полиформальдегид) POM14000.22
Аэрогель (Aspen aerogels)110…2000.014…0.021700
Базальт2600…30003.5850
Бакелит12500.23
Бальза110…1400.043…0.052
Береза510…7700.151250
Бетон легкий с природной пемзой500…12000. 15…0.44
Бетон на гравии или щебне из природного камня24001.51840
Бетон на вулканическом шлаке800…16000.2…0.52840
Бетон на доменных гранулированных шлаках1200…18000.35…0.58840
Бетон на зольном гравии1000…14000.24…0.47840
Бетон на каменном щебне2200…25000.9…1.5
Бетон на котельном шлаке14000.56880
Бетон на песке1800…25000.7710
Бетон на топливных шлаках1000…18000.3…0.7840
Бетон силикатный плотный18000.81880
Бетон сплошной1.75
Бетон термоизоляционный5000.18
Битумоперлит300…4000. 09…0.121130
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74)1000…14000.17…0.271680
Блок газобетонный400…8000.15…0.3
Блок керамический поризованный0.2
Бронза7500…930022…105400
Бумага700…11500.141090…1500
Бут1800…20000.73…0.98
Вата минеральная легкая500.045920
Вата минеральная тяжелая100…1500.055920
Вата стеклянная155…2000.03800
Вата хлопковая30…1000.042…0.049
Вата хлопчатобумажная50…800.0421700
Вата шлаковая2000. 05750
Вермикулит (в виде насыпных гранул) ГОСТ 12865-67100…2000.064…0.076840
Вермикулит вспученный (ГОСТ 12865-67) — засыпка100…2000.064…0.074840
Вермикулитобетон300…8000.08…0.21840
Воздух сухой при 20°С1.2050.02591005
Войлок шерстяной150…3300.045…0.0521700
Газо- и пенобетон, газо- и пеносиликат280…10000.07…0.21840
Газо- и пенозолобетон800…12000.17…0.29840
Гетинакс13500.231400
Гипс формованный сухой1100…18000.431050
Гипсокартон500…9000.12…0.2950
Гипсоперлитовый раствор0. 14
Гипсошлак1000…13000.26…0.36
Глина1600…29000.7…0.9750
Глина огнеупорная18001.04800
Глиногипс800…18000.25…0.65
Глинозем3100…39002.33700…840
Гнейс (облицовка)28003.5880
Гравий (наполнитель)18500.4…0.93850
Гравий керамзитовый (ГОСТ 9759-83) — засыпка200…8000.1…0.18840
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка400…8000.11…0.16840
Гранит (облицовка)2600…30003.5880
Грунт 10% воды1.75
Грунт 20% воды17002.1
Грунт песчаный1. 16900
Грунт сухой15000.4850
Грунт утрамбованный1.05
Гудрон950…10300.3
Доломит плотный сухой28001.7
Дуб вдоль волокон7000.232300
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83)7000.12300
Дюралюминий2700…2800120…170920
Железо787070…80450
Железобетон25001.7840
Железобетон набивной24001.55840
Зола древесная7800.15750
Золото19320318129
Известняк (облицовка)1400…20000.5…0.93850…920
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80)300…4000. 067…0.111680
Изделия вулканитовые350…4000.12
Изделия диатомитовые500…6000.17…0.2
Изделия ньювелитовые160…3700.11
Изделия пенобетонные400…5000.19…0.22
Изделия перлитофосфогелевые200…3000.064…0.076
Изделия совелитовые230…4500.12…0.14
Иней0.47
Ипорка (вспененная смола)150.038
Каменноугольная пыль7300.12
Камень керамический поризованный Braer 14,3 НФ и 10,7 НФ810…8400.14…0.185
Камни многопустотные из легкого бетона500…12000.29…0.6
Камни полнотелые из легкого бетона DIN 18152500…20000. 32…0.99
Камни полнотелые из природного туфа или вспученной глины500…20000.29…0.99
Камень строительный22001.4920
Карболит черный11000.231900
Картон асбестовый изолирующий720…9000.11…0.21
Картон гофрированный7000.06…0.071150
Картон облицовочный10000.182300
Картон парафинированный0.075
Картон плотный600…9000.1…0.231200
Картон пробковый1450.042
Картон строительный многослойный (ГОСТ 4408-75)6500.132390
Картон термоизоляционный (ГОСТ 20376-74)5000.04…0.06
Каучук вспененный820. 033
Каучук вулканизированный твердый серый0.23
Каучук вулканизированный мягкий серый9200.184
Каучук натуральный9100.181400
Каучук твердый0.16
Каучук фторированный1800.055…0.06
Кедр красный500…5700.095
Кембрик лакированный0.16
Керамзит800…10000.16…0.2750
Керамзитовый горох900…15000.17…0.32750
Керамзитобетон на кварцевом песке с поризацией800…12000.23…0.41840
Керамзитобетон легкий500…12000.18…0.46
Керамзитобетон на керамзитовом песке и керамзитопенобетон500…18000. 14…0.66840
Керамзитобетон на перлитовом песке800…10000.22…0.28840
Керамика1700…23001.5
Керамика теплая0.12
Кирпич доменный (огнеупорный)1000…20000.5…0.8
Кирпич диатомовый5000.8
Кирпич изоляционный0.14
Кирпич карборундовый1000…130011…18700
Кирпич красный плотный1700…21000.67840…880
Кирпич красный пористый15000.44
Кирпич клинкерный1800…20000.8…1.6
Кирпич кремнеземный0.15
Кирпич облицовочный18000.93880
Кирпич пустотелый0. 44
Кирпич силикатный1000…22000.5…1.3750…840
Кирпич силикатный с тех. пустотами0.7
Кирпич силикатный щелевой0.4
Кирпич сплошной0.67
Кирпич строительный800…15000.23…0.3800
Кирпич трепельный700…13000.27710
Кирпич шлаковый1100…14000.58
Кладка бутовая из камней средней плотности20001.35880
Кладка газосиликатная630…8200.26…0.34880
Кладка из газосиликатных теплоизоляционных плит5400.24880
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе16000.47880
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе18000. 56880
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе17000.52880
Кладка из керамического пустотного кирпича на цементно-песчаном растворе1000…14000.35…0.47880
Кладка из малоразмерного кирпича17300.8880
Кладка из пустотелых стеновых блоков1220…14600.5…0.65880
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе15000.64880
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе14000.52880
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе18000.7880
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе1000…12000. 29…0.35880
Кладка из ячеистого кирпича13000.5880
Кладка из шлакового кирпича на цементно-песчаном растворе15000.52880
Кладка «Поротон»8000.31900
Клен620…7500.19
Кожа800…10000.14…0.16
Композиты технические0.3…2
Краска масляная (эмаль)1030…20450.18…0.4650…2000
Кремний2000…2330148714
Кремнийорганический полимер КМ-911600.21150
Латунь8100…885070…120400
Лед -60°С9242.911700
Лед -20°С9202.441950
Лед 0°С9172. 212150
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79)1600…18000.33…0.381470
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77)1400…18000.23…0.351470
Липа, (15% влажности)320…6500.15
Лиственница6700.13
Листы асбестоцементные плоские (ГОСТ 18124-75)1600…18000.23…0.35840
Листы вермикулитовые0.1
Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 62668000.15840
Листы пробковые легкие2200.035
Листы пробковые тяжелые2600.05
Магнезия в форме сегментов для изоляции труб220…3000.073…0.084
Мастика асфальтовая20000. 7
Маты, холсты базальтовые25…800.03…0.04
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75)1500.061840
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82)50…1250.048…0.056840
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00)100…1500.045
Мел1800…28000.8…2.2800…880
Медь (ГОСТ 859-78)8500407420
Миканит2000…22000.21…0.41250
Мипора16…200.0411420
Морозин100…4000.048…0.084
Мрамор (облицовка)28002.9880
Накипь котельная (богатая известью, при 100°С)1000…25000. 15…2.3
Накипь котельная (богатая силикатом, при 100°С)300…12000.08…0.23
Настил палубный6300.211100
Найлон0.53
Нейлон13000.17…0.241600
Неопрен0.211700
Опилки древесные200…4000.07…0.093
Пакля1500.052300
Панели стеновые из гипса DIN 1863600…9000.29…0.41
Парафин870…9200.27
Паркет дубовый18000.421100
Паркет штучный11500.23880
Паркет щитовой7000.17880
Пемза400…7000.11…0.16
Пемзобетон800…16000. 19…0.52840
Пенобетон300…12500.12…0.35840
Пеногипс300…6000.1…0.15
Пенозолобетон800…12000.17…0.29
Пенопласт ПС-11000.037
Пенопласт ПС-4700.04
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78)65…1250.031…0.0521260
Пенопласт резопен ФРП-165…1100.041…0.043
Пенополистирол (ГОСТ 15588-70)400.0381340
Пенополистирол (ТУ 6-05-11-78-78)100…1500.041…0.051340
Пенополистирол Пеноплэкс22…470.03…0.0361600
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75)40…800.029…0. 0411470
Пенополиуретановые листы1500.035…0.04
Пенополиэтилен0.035…0.05
Пенополиуретановые панели0.025
Пеносиликальцит400…12000.122…0.32
Пеностекло легкое100..2000.045…0.07
Пеностекло или газо-стекло (ТУ 21-БССР-86-73)200…4000.07…0.11840
Пенофол44…740.037…0.039
Пергамент0.071
Пергамин (ГОСТ 2697-83)6000.171680
Перекрытие армокерамическое с бетонным заполнением без штукатурки1100…13000.7850
Перекрытие из железобетонных элементов со штукатуркой15501.2860
Перекрытие монолитное плоское железобетонное24001. 55840
Перлит2000.05
Перлит вспученный1000.06
Перлитобетон600…12000.12…0.29840
Перлитопласт-бетон (ТУ 480-1-145-74)100…2000.035…0.0411050
Перлитофосфогелевые изделия (ГОСТ 21500-76)200…3000.064…0.0761050
Песок 0% влажности15000.33800
Песок 10% влажности0.97
Песок 20% влажности1.33
Песок для строительных работ (ГОСТ 8736-77)16000.35840
Песок речной мелкий15000.3…0.35700…840
Песок речной мелкий (влажный)16501.132090
Песчаник обожженный1900…27001. 5
Пихта450…5500.1…0.262700
Плита бумажная прессованая6000.07
Плита пробковая80…5000.043…0.0551850
Плита огнеупорная теплоизоляционная Avantex марки Board200…5000.04
Плитка облицовочная, кафельная20001.05
Плитка термоизоляционная ПМТБ-20.04
Плиты алебастровые0.47750
Плиты из гипса ГОСТ 64281000…12000.23…0.35840
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77)200…10000.06…0.152300
Плиты из керзмзито-бетона400…6000.23
Плиты из полистирол-бетона ГОСТ Р 51263-99200…3000. 082
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75)40…1000.038…0.0471680
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78)500.056840
Плиты из ячеистого бетона ГОСТ 5742-76350…4000.093…0.104
Плиты камышитовые200…3000.06…0.072300
Плиты кремнезистые 0.07
Плиты льнокостричные изоляционные2500.0542300
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80150…2000.058
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-962250.054
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия)170…2300.042…0.044
Плиты минераловатные повышенной жесткости ГОСТ 22950-952000.052840
Плиты минераловатные повышенной жесткости на органофосфатном связующем
(ТУ 21-РСФСР-3-72-76)
2000.064840
Плиты минераловатные полужесткие на крахмальном связующем125…2000.056…0.07840
Плиты минераловатные на синтетическом и битумном связующих0.048…0.091
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66)50…3500.048…0.091840
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-8780…1000.045
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые30…350.038
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00320.029
Плиты перлито-битумные ГОСТ 16136-803000.087
Плиты перлито-волокнистые1500.05
Плиты перлито-фосфогелевые ГОСТ 21500-762500.076
Плиты перлито-1 Пластбетонные ТУ 480-1-145-741500.044
Плиты перлитоцементные0.08
Плиты строительный из пористого бетона500…8000.22…0.29
Плиты термобитумные теплоизоляционные200…3000.065…0.075
Плиты торфяные теплоизоляционные (ГОСТ 4861-74)200…3000.052…0.0642300
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе300…8000.07…0.162300
Покрытие ковровое6300.21100
Покрытие синтетическое (ПВХ)15000.23
Пол гипсовый бесшовный7500.22800
Поливинилхлорид (ПВХ)1400…16000.15…0.2
Поликарбонат (дифлон)12000.161100
Полипропилен (ГОСТ 26996– 86)900…9100.16…0.221930
Полистирол УПП1, ППС10250.09…0.14900
Полистиролбетон (ГОСТ 51263)150…6000.052…0.1451060
Полистиролбетон модифицированный на активированном пластифицированном шлакопортландцементе200…5000.057…0.1131060
Полистиролбетон модифицированный на композиционном малоклинкерном вяжущем в стеновых блоках и плитах200…5000.052…0.1051060
Полистиролбетон модифицированный монолитный на портландцементе250…3000.075…0.0851060
Полистиролбетон модифицированный на шлакопортландцементе в стеновых блоках и плитах200…5000.062…0.1211060
Полиуретан12000.32
Полихлорвинил1290…16500.151130…1200
Полиэтилен высокой плотности9550.35…0.481900…2300
Полиэтилен низкой плотности9200.25…0.341700
Поролон340.04
Портландцемент (раствор)0.47
Прессшпан0.26…0.22
Пробка гранулированная техническая450.0381800
Пробка минеральная на битумной основе270…3500.073…0.096
Пробковое покрытие для полов5400.078
Ракушечник1000…18000.27…0.63835
Раствор гипсовый затирочный12000.5900
Раствор гипсоперлитовый6000.14840
Раствор гипсоперлитовый поризованный400…5000.09…0.12840
Раствор известковый16500.85920
Раствор известково-песчаный1400…16000.78840
Раствор легкий LM21, LM36700…10000.21…0.36
Раствор сложный (песок, известь, цемент)17000.52840
Раствор цементный, цементная стяжка20001.4
Раствор цементно-песчаный1800…20000.6…1.2840
Раствор цементно-перлитовый800…10000.16…0.21840
Раствор цементно-шлаковый1200…14000.35…0.41840
Резина мягкая0.13…0.161380
Резина твердая обыкновенная900…12000.16…0.231350…1400
Резина пористая160…5800.05…0.172050
Рубероид (ГОСТ 10923-82)6000.171680
Руда железная2.9
Сажа ламповая1700.07…0.12
Сера ромбическая20850.28762
Серебро10500429235
Сланец глинистый вспученный4000.16
Сланец2600…33000.7…4.8
Слюда вспученная1000.07
Слюда поперек слоев2600…32000.46…0.58880
Слюда вдоль слоев2700…32003.4880
Смола эпоксидная1260…13900.13…0.21100
Снег свежевыпавший120…2000.1…0.152090
Снег лежалый при 0°С400…5600.52100
Сосна и ель вдоль волокон5000.182300
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72)5000.092300
Сосна смолистая 15% влажности600…7500.15…0.232700
Сталь стержневая арматурная (ГОСТ 10884-81)785058482
Стекло оконное (ГОСТ 111-78)25000.76840
Стекловата155…2000.03800
Стекловолокно1700…20000.04840
Стеклопластик18000.23800
Стеклотекстолит1600…19000.3…0.37
Стружка деревянная прессованая8000.12…0.151080
Стяжка ангидритовая21001.2
Стяжка из литого асфальта23000.9
Текстолит1300…14000.23…0.341470…1510
Термозит300…5000.085…0.13
Тефлон21200.26
Ткань льняная0.088
Толь (ГОСТ 10999-76)6000.171680
Тополь350…5000.17
Торфоплиты275…3500.1…0.122100
Туф (облицовка)1000…20000.21…0.76750…880
Туфобетон1200…18000.29…0.64840
Уголь древесный кусковой (при 80°С)1900.074
Уголь каменный газовый14203.6
Уголь каменный обыкновенный1200…13500.24…0.27
Фарфор2300…25000.25…1.6750…950
Фанера клееная (ГОСТ 3916-69)6000.12…0.182300…2500
Фибра красная12900.46
Фибролит (серый)11000.221670
Целлофан0.1
Целлулоид14000.21
Цементные плиты1.92
Черепица бетонная21001.1
Черепица глиняная19000.85
Черепица из ПВХ асбеста20000.85
Чугун722040…60500
Шевелин140…1900.056…0.07
Шелк1000.038…0.05
Шлак гранулированный5000.15750
Шлак доменный гранулированный600…8000.13…0.17
Шлак котельный10000.29700…750
Шлакобетон1120…15000.6…0.7800
Шлакопемзобетон (термозитобетон)1000…18000.23…0.52840
Шлакопемзопено- и шлакопемзогазобетон800…16000.17…0.47840
Штукатурка гипсовая8000.3840
Штукатурка известковая16000.7950
Штукатурка из синтетической смолы11000.7
Штукатурка известковая с каменной пылью17000.87920
Штукатурка из полистирольного раствора3000.11200
Штукатурка перлитовая350…8000.13…0.91130
Штукатурка сухая0.21
Штукатурка утепляющая5000.2
Штукатурка фасадная с полимерными добавками18001880
Штукатурка цементная0.9
Штукатурка цементно-песчаная18001.2
Шунгизитобетон1000…14000.27…0.49840
Щебень и песок из перлита вспученного (ГОСТ 10832-83) — засыпка200…6000.064…0.11840
Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75) и аглопорита (ГОСТ 11991-83) — засыпка400…8000.12…0.18840
Эбонит12000.16…0.171430
Эбонит вспученный6400.032
Эковата35…600.032…0.0412300
Энсонит (прессованный картон)400…5000.1…0.11
Эмаль (кремнийорганическая)0.16…0.27

Волокна растительного и живого происхождения, химические волокна

Волокна растительного происхождения. К волокнам растительного происхождения относят хлопковые и лубяные.

Хлопок — это волокна, покрывающие семена растения хлопчатника. Основным веществом (94-96 %), из которого состоит хлопковое волокно, является целлюлоза. К сопутствующим веществам (4—6 %) относятся вода, пектиновые (склеивающие), жировосковые, зольные вещества и др.

Хлопковое волокно нормальной зрелости под микроскопом имеет вид плоской ленточки со штопорообразной извитостью и с каналом, заполненным внутри воздухом.

Хлопковое волокно обладает многими положительными свойствами. Прежде всего, оно имеет высокую гигроскопичность (8~12%), поэтому хлопчатобумажные ткани и изделия из них обладают хорошими гигиеническими свойствами.

Хлопок обладает способностью быстро впитывать влагу и быстро ее испарять, т. е. быстро высыхает. При погружении в воду волокна набухают, и их прочность увеличивается на 10-20 %. Хлопок устойчив к действию щелочей, но разрушается даже разбавленными кислотами.

На способность хлопка набухать в щелочах и повышать при этом прочность, окрашиваемость и приобретать шелковистость и блеск основано проведение специальной операции отделки — мерсеризации. Волокна достаточно прочные. Хлопок имеет сравнительно высокую термостойкость — разрушения волокна при температуре до 130 °С не происходит. Хлопковое волокно более стойкое, чем вискозное и натуральный шелк, к действию света, но по светостойкости уступает лубяным и шерстяным волокнам. Волокна хлопка горят желтым пламенем, образуя серый пепел, ощущается запах жженой бумаги. Отрицательными свойствами хлопкового волокна являются высокая сминаемость (из-за малой упругости), большая усадка, низкая стойкость к действию кислот.

Лен. Волокна, которые получают из стеблей, листьев или оболочек плодов растений, называются лубяными. Из стеблей конопли вырабатывают прочные грубые волокна — пеньку, которая используется для тарных тканей и веревочно-канатных изделий. Грубые технические волокна (джут, кенаф, рами) получают из стеблей одноименных растений. Из всех лубяных волокон наибольшее применение получило льняное.

Льняные волокна получают из лубяной части стебля. Лен — однолетнее травянистое растение.

Характерной особенностью лубяных волокон в отличие от других является то, что они представляют собой пучки волокон, соединенных пектиновыми веществами. При длительном кипячении в мыльно-содовых растворах пектиновые вещества вымываются и лен делится на отдельные волокна.

Отдельное волокно льна представляет собой одну растительную клетку. Под микроскопом волокно в продольном виде представляет собой цилиндр с толстыми стенками. Поперечный срез волокна — многоугольник с 5-6 гранями.

Поверхность волокна более ровная и гладкая, в результате чего льняные ткани меньше, чем хлопчатобумажные, загрязняются и легче отстирываются. Эти свойства льна особенно ценны для бельевых полотен.

В составе волокна 80% целлюлозы и 20% примесей — воскообразных, жировых, красящих, минеральных и лигнина (5%). Лигнин -продукт одревеснения клетки, придающий льну повышенную жесткость. Содержание лигнина в льняном волокне делает его устойчивым к действию света, погоды, микроорганизмов.

Прочность элементарных волокон в 3-5 раз превышает прочность хлопка, а растяжимость — во столько же раз меньше, поэтому льняные прокладочные ткани лучше сохраняют форму изделий, чем хлопчатобумажные. Волокна блестят, так как имеют гладкую поверхность, Физико-химические свойства льна и хлопка достаточно близки. Льняное волокно уникально тем, что при высокой гигроскопичности (12%), оно быстрее других текстильных волокон поглощает и выделяет влагу. Особенностью льна является его высокая теплопроводность, поэтому на ощупь волокна всегда прохладные. Термического разрушения волокна не происходит до температуры 160 °С. Химические свойства льняного волокна аналогичны хлопковому, т. е. оно устойчиво к действию щелочей, но не устойчиво к кислотам. В связи с тем, что льняные ткани имеют свой естественный красивый достаточно шелковистый блеск, мерсеризации их не подвергают. Отрицательным свойством льняного волокна является его сильная сминаемость из-за низкой упругости. Волокна льна отбеливаются и окрашиваются, так как имеют более интенсивную природную окраску, толстые стенки.

Волокна животного происхождения. К волокнам животного происхождения относят шерсть и натуральный шелк.

Шерсть — это волокна снятого волосяного покрова овец коз, верблюдов, кроликов и других животных. Шерсть получают в основном с овец (97-98%), в меньшем количестве с коз (до 2%), верблюдов (до 1 %). Шерстяные волокна состоят из белка кератина.

Шерстяные волокна под микроскопом легко можно отличить от других волокон — их наружная поверхность покрыта чешуйками. Под микроскопом видна своеобразная извитость шерстяных волокон. Их извитки волнообразны в отличие от хлопковых волокон, извитки которых штопорообразные. Сильную извитость имеет тонкая шерсть.

Шерсть может быть следующих видов: пух, переходный волос, ость и мертвый волос. Пух — тонкое, сильно извитое, шелковистое волокно; переходный волос неравномерен по толщине, прочности, имеет меньшую извитость; ость и мертвый волос характеризуются большей толщиной, отсутствием извитости, повышенной жесткостью и хрупкостью, малой прочностью, мертвый волос плохо окрашивается, легко ломается и выпадает из готовых изделий.

Шерсть может быть однородной (из волокон преимущественно одного вида, например, пуха) и неоднородной (из волокон разных видов — пуха, переходного волоса и др.). В зависимости от толщины волокон и однородности их состава шерсть подразделяют на тонкую, полутонкую, полугрубую и грубую. Тонкая шерсть состоит из тонких волокон пуха, полутонкая состоит из более толстого пуха или переходного волоса; полугрубая может быть однородной и неоднородной и состоять из пуха, переходного волоса и небольшого количества ости; грубая — неоднородная и включает в себя все виды волокон, в том числе ость и мертвый волос.

Шерстяное волокно имеет высокую упругость, а следовательно, малую сминаемость. Шерсть — достаточно прочное волокно, удлинение при разрыве высокое. В мокром состоянии волокна на 30 % теряют прочность.

Блеск шерсти определяется формой и размером покрывающих ее чешуек: крупные плоские чешуйки придают шерсти максимальный блеск; мелкие, сильно отстающие чешуйки делают ее матовой.

Свойства шерсти уникальны — ей присуща высокая свойлачиваемость, что объясняется наличием на поверхности волокна чешуйчатого слоя. Это свойство учитывается при отделке (валке) суконных тканей, фетра, войлока, одеял, при производстве валяной обуви.

Шерсть обладает низкой теплопроводностью, поэтому ткани отличаются высокими теплозащитными свойствами.

По гигроскопичности шерсть превосходит все волокна. Она медленно впитывает и испаряет влагу и поэтому не охлаждается, оставаясь на ощупь сухой. На способности шерсти менять свою растяжимость и усадку при влажно-тепловой обработке основано проведение ряда операций: сутюживание, оттягивание и декатировка. При высыхании шерсть дает максимальную усадку, поэтому изделия из нее рекомендуется подвергать химической чистке.

К действию света шерстяное волокно более устойчиво, чем хлопковое и льняное. Но при длительном облучении оно разрушается.

Щелочи на шерсть действуют разрушающе, к кислотам она устойчива. Поэтому если шерстяные волокна, содержащие растительные примеси, обработать раствором кислоты, то эти примеси, состоящие из целлюлозы, растворятся, и шерстяные волокна останутся в чистом виде. Такой процесс очистки шерсти называют карбонизацией,

В пламени волокна шерсти спекаются, но при вынесении из пламени не горят, образуя на конце волокон спекшийся черный шарик, который легко растирается, при этом ощущается запах жженого пера. Недостатком шерсти является малая термостойкость — при температуре 100—110 С волокна становятся ломкими и жесткими, снижается их прочность.

Натуральный шелк по своим свойствам и себестоимости — ценнейшее текстильное сырье. Получают его разматыванием коконов, образуемых гусеницами шелкопрядов. Наибольшее распространение и ценность имеет шелк тутового шелкопряда, на долю которого приходится 90% мирового производства шелка.

При рассмотрении коконной нити под микроскопом четко видны две шелковины, неравномерно склеенные серицином. В составе коконной нити два белка: фиброин (75 %), из которого состоят шелковины, и серицин (25 %).

Из всех природных волокон натуральный шелк самое легкое волокно и наряду с красивым внешним видом обладает высокой гигроскопичностью (11%), мягкостью, шелковистостью, малой сминаемостью, является незаменимым сырьем для изготовления летней одежды (платьев, блузок).

Натуральный шелк обладает высокой прочностью. Разрывная нагрузка шелка в мокром состоянии снижается примерно на 15%.

Химические свойства натурального шелка аналогичны шерсти, т. е. к кислотам устойчив, к щелочи — нет.

Натуральный шелк имеет самую низкую светостойкость, поэтому в домашних условиях изделия на свету не сушат, особенно при солнечном свете. К другим недостаткам натурального шелка относят низкую термостойкость (такая же, как у шерсти) и высокую усадку, особенно у крученых нитей.

Химические волокна. Химические волокна получают путем химической переработки природных (целлюлозы, белков и др.) или синтетических высокомолекулярных веществ (полиамидов, полиэфиров и др.).

Основным исходным сырьем для получения химических волокон служат древесина, отходы хлопка, стекло, металлы, нефть, газы и каменный уголь.

Волокна формуют из расплавов или растворов высокомолекулярных соединений. Расплав или прядильный раствор высокомолекулярного вещества (полимера) фильтруется и продавливается через тончайшие отверстия в фильерах. Фильеры представляют собой рабочие органы прядильных машин, осуществляющие процесс формования волокон. Струйки прядильных растворов или расплавов, вытекающие из фильеры, затвердевая, образуют нити. Используя фильеры с отверстиями сложной конфигурации, можно получить профилированные и полые волокна.

1. Искусственные волокна. К искусственным относят волокна, получаемые переработкой природных высокомолекулярных соединений — целлюлозы, белков. Более 99 % этих волокон вырабатывают из целлюлозы.

Вискозное волокно — одно из первых химических волокон, вырабатываемых в промышленных масштабах. Для его изготовления используют обычно древесную, преимущественно еловую, целлюлозу, которую путем обработки химическими реагентами превращают в прядильный раствор — вискозу.

Вискозные волокна отличаются высокой гигроскопичностью (11 — 12%), поэтому изделия из них хорошо впитывают влагу и являются гигиеничными; в воде волокна сильно набухают, при этом площадь поперечного сечения увеличивается в 2 раза. Они достаточно устойчивы к истиранию, поэтому их целесообразно использовать для выработки изделий, для которых важными характеристиками являются высокие износостойкость и гигиенические свойства (например, для подкладочных и сорочечных тканей).

Вискозное волокно имеет высокую термостойкость, средние прочность и удлинение, по отношению к кислотам и щелочам — аналогично хлопку и льну.

Однако вискозное волокно имеет ряд существенных недостатков, проявляющихся в изделиях из него, — это сильная сминаемость из-за низкой упругости и высокая усадка (6-8%). Другим недостатком вискозного волокна является большая потеря прочности в мокром состоянии (50-60%). Для снижения недостатков вискозное волокно физически или химически модифицируют, получая полинозные волокна, мтилон, сиблон и др. Полинозное волокно напоминает тонковолокнистый хлопок и применяется при производстве сорочечных, бельевых и др. тканей. Мтилон — шерстоподобное вискозное волокно, которое применяется для ворса ковров. Сиблон — заменитель средне волокнистого хлопка.

Ацетатные волокна получают из хлопкового пуха или облагороженной древесной целлюлозы.

При воздействии на целлюлозу уксусным ангидридом, уксусной и серной кислотами образуется ацетил целлюлоза, из раствора которой получают ацетатные волокна или нити. В зависимости от применяемых растворителей и других химических реагентов получают диацетатные, называемые ацетатными, и триацетатные волокна.

Некоторые из свойств ацетатных и триацетатных волокон являются общими, а некоторые имеют свои особенности. Так, к общим положительным свойствам относят малую сминаемость и усадку (до 1,5 %), а также способность сохранять в изделиях эффекты гофре, плиссе даже после мокрых обработок; к недостаткам, сдерживающим их применение в ассортименте изделий, — низкую устойчивость к истиранию, в результате чего нецелесообразно их применение в ассортименте подкладочных, сорочечных, костюмных тканей. Лучше эти волокна использовать в ассортименте галстучных тканей, для которых износостойкость большого значения не имеет. К другим общим недостаткам волокон относят высокую электризуемость и склонность изделий к образованию заломов в мокром состоянии.

Различия в свойствах ацетатного и триацетатного волокон состоят в следующем. Гигроскопичность у ацетатного волокна выше (6,2 %), чем у триацетатных (4,5%), однако последние лучше окрашиваются и имеют, большую свето- и термостойкость (180 X против 140-150*С).

Из других искусственных волокон в производстве тканей используют алюнит (люрекс), пластилекс, метанит.

2. Синтетические волокна. Синтетические волокна получают из природных низкомолекулярных веществ (мономеров), которые путем химического синтеза превращаются в высокомолекулярные (полимеры).

Синтетические волокна по сравнению с искусственными обладают высокой износостойкостью, малыми сминаемостью и усадкой, но их гигиенические свойства невысокие.

Полиамидные волокна (капрон). Волокно капрон, применяющееся наиболее широко, получают из продуктов переработки каменного угля.

К положительным свойствам капронового волокна относят высокую прочность, а также самую большую из текстильных волокон устойчивость к истиранию по изгибам. Эти ценные свойства капронового волокна используют при введении его в смеску с другими волокнами для получения износостойких материалов, введение 5-10% капронового волокна в шерстяную ткань в 1,5-2 раза повышает ее стойкость к истиранию. Капроновое волокно также обладает малой сминаемостью и усадкой, устойчивостью к действию микроорганизмов.

При внесении в пламя капрон плавится, загорается с трудом горит голубоватым пламенем. Если расплавленная масса начинает капать, горение прекращается, на конце образуется оплавленный бурый шарик, ощущается запах сургуча.

Однако капроновое волокно мало гигроскопично (3,5-4%), поэтому гигиенические свойства изделий из таких волокон невысокие. Кроме этого, капроновое волокно жесткое, сильно электризуется, неустойчиво к действию света, щелочей, минеральных кислот, имеет низкую термостойкость. На поверхности изделий выработанных из капроновых волокон, образуются пилли, которые из-за высокой прочности волокон сохраняются в изделии и в процессе носки не исчезают.  

Полиэфирные волокна, полиэтилентерефшалат ПЭТФ (лавсан или полиэстер). Исходным сырьем для получения лавсана служат продукты переработки нефти. 

В общемировом производстве синтетических волокон эти волокна выходят на первое место. Лавсановое волокно характеризуется отличной несминаемостью, превосходящей все текстильные волокна, в том числе и шерсть. Так изделия из лавсановых волокон в 2-3 раза меньше сминаются, чем шерстяные. Чтобы изделия с целлюлозными волокнами стали малосминаемыми, в смеску к этим волокнам добавляют 45-55 % лавсановых волокон.

Лавсановое волокно обладает очень хорошей стойкостью к свету и атмосферным воздействиям (уступает только нитроновому волокну). По этой причине его целесообразно использовать в гардинно-тюлевых, тентовых, палаточных изделиях. Лавсановое волокно — одни из термостойких волокон. Оно термопластично благодаря, чему изделия хорошо сохраняют эффекты плиссе и гофре. По стойкости к истиранию и изгибам лавсановое волокно несколько уступает капроновому. Но прочность на разрыв и удлинение при разрыве высокие. Волокно стойко к разбавленным кислотам, шелочам, но разрушается при воздействии концентрированной серной кислотой и горячей щелочью. Горит лавсан желтым коптящим пламенем, образуя на конце черный нерастирающийся шарик.

Однако лавсановое волокно обладает низкой гигроскопичностью (до 1 %), плохой окрашиваемостью, повышенной жесткостью, электризуемостью и пиллингуемостью. Причем пилли длительно сохраняются на поверхности изделий.

Полиакрилонитрильные (ПАН) волокна (акрил или нитрон). Исходным сырьем для изготовления нитрона служат продукты переработки каменного угля, нефти, газа.

Нитрон — наиболее мягкое, шелковистое и теплое синтетическое волокно. По теплозащитным свойствам превосходит шерсть, но по стойкости к истиранию уступает даже хлопку. Прочность нитрона вдвое ниже прочности капрона, гигроскопичность низкая (1,5%). Нитрон отличается кислостойкостью, устойчив к действию всех органических растворителей, но разрушается щелочами.

Обладает малой сминаемостью и усадкой. По светостойкости превосходит все текстильные волокна. Горит нитрон желтым коптящим пламенем со вспышками, образуя на конце твердый шарик.

Волокно хрупкое, плохо окрашивается, сильно электризуется и пиллингуется, но пилли из-за невысоких прочностных свойств в процессе носки исчезают.

Поливинилхлоридные волокна вырабатывают из поливинилхлорида — волокно ПВХ и из перхлорвинила — хлорин. Волокна отличаются высокой химической стойкостью, малой теплопроводностью, очень низкой гигроскопичностью (0,1-0,15%), способностью накапливать при трении о кожу человека электростатические заряды, имеющие лечебный эффект при болезнях суставов. Недостатками являются низкая теплостойкость и неустойчивость к действию света.

Поливинилспиртовые волокна (винол) получают из поливинилацетата. Винол имеет самую высокую гигроскопичность (5%), обладает высокой устойчивостью к истиранию, уступая только полиамидным волокнам, хорошо окрашивается.

Полиолефиновые волокна получают из расплавов полиэтилена и полипропилена. Это самые легкие текстильные волокна, изделия из них в воде не тонут. Они устойчивы к истиранию, действию химических реагентов, отличаются высокой прочностью на разрыв. Недостатками являются малая светостойкость и низкая теплостойкость.

Полиуретановые волокна (спандекс ими лайкра) относятся к эластомерам, так как обладают исключительно высокой эластичностью (растяжимость до 800%). Обладают легкостью, мягкостью, устойчивостью к действию света, стирке, поту. К недостаткам относятся: низкая гигроскопичность (1 — 1,5%), невысокая прочность, низкая теплостойкость.

Гагачий пух – золотое руно северных морей — Владимир Дудин

Кто в России не слышал про гагачий пух? Да, у нас знают и любят гагачий пух, но, спросив о том, какого он цвета, будьте уверены, что многие, не задумываясь, ответят – гагачий пух белый. Если продолжить задавать вопросы, ответов на них вы можете не услышать. Как выяснилось и в средствах массовой информации много неточностей и заведомо искажённых фактов. К счастью, в нашей стране есть люди, которые смогут ответить на все интересующие нас вопросы. Обратимся в Лабораторию по переработке гагачьего пуха. На вопросы Антона Круглова отвечает владелец лаборатории Владимир Дудин.

Итак, Владимир, что такое гагачий пух и в чём его уникальность?

Гагачий пух – это уникальный теплоизоляционный материал природного происхождения. Собирают его из гнёзд гаги.

Немного о самой гаге.

Гага обыкновенная (Somateria Mollissima) – арктическая нырковая утка, вес которой достигает 3,5 кг. Ареал обитания – побережье северных морей от Канады до России. Основная пища: мидии, ракообразные и рыба. Добывая пищу, гага ныряет на глубину до 10 м. Как и все настоящие морские птицы, она связана с твёрдой землёй лишь в период гнездования. Всё остальное время проводит в открытом море. Ей не страшны ни сильный прибой, ни шторм, ни лютый мороз. Данный вид широко известен своим знаменитым гагачьим пухом. Вместе с густым оперением и слоем подкожного жира этот пышный высокий пух, особенно густо одевающий брюшко, является одним из приспособлений птицы к жизни на ледяной воде северных морей, на холодных скалах, на снегу, на мерзлой почве арктических побережий. Пух обладает исключительной легкостью и малой теплопроводностью. Самцы имеют черно-белое оперение и в народе называются «гагунами». Оперение самки окрашено в тёмно-коричневый цвет с оттенками черного и серого цветов. Это оперение идеально при маскировке на гнезде и позволяет самке часто оставаться незамеченной.

Вы упомянули о том, что гагачий пух собирают с гнёзд. Когда и как это делают?

Как только брачный период окончен, самки приступают к кладке. Каждая самка выбирает себе подходящее место и выдавливает в почве лунку, в которую откладывает от трёх до семи яиц. Гагачий пух, который служил ей защитой в лютую стужу, теперь препятствует процессу насиживания, поэтому самки выщипывают самый нежный и лучший пух у себя с брюшка и освобождают насидное место (для каждого яйца есть свой насидный мозоль). Выщипанным пухом самка выстилает гнездо. В этот период самцы держаться поблизости, но как только процесс кладки окончен и начался период насиживания, самцы собираются в стаи и откочёвывают к местам ежегодной линьки. Вся забота о потомстве ложится на самок. К этому моменту люди готовятся к началу сбора.

Я слышал, что процесс сбора и переработки гагачьего пуха в Исландии – это целая индустрия. Не могли бы вы рассказать об этом подробнее.

Когда-то для меня гагачий пух был чем-то неведомым, как для греков золотое руно. Только в отличие от Ясона с аргонавтами я отправился не в Колхиду, а в Исландию. Изучив подробно все факты, которые историки и литературоведы отыскали, пользуясь древним текстом, мне удалось провести параллель со своим первым путешествием в Исландию.

Вы, наверное, знаете, что золотое руно – это символ, означающий ни что иное как технологию добычи золота с помощью овечьих шкур. В древней Колхиде в горных ручьях, которые, на своём пути размывая золотоносные жилы, несли золотой песок вниз по течению, предки современных грузин расстилали под горные струи овечьи шкуры. В шерсти золотой песок задерживался, шкуру сушили и выбивали из неё золото.

Чистый гагачий пух – это золотое руно северных морей. Как и в случае с Древней Колхидой – это технология, без которой гагачий пух ничего не стоит.

Современная технология переработки гагачьего пуха была создана в 70-е годы ХХ века в Исландии. К концу прошлого века требования к качеству гагачьего пуха возросли, и необходимо было срочно усовершенствовать процесс переработки. В 90-е годы прошлого века, благодаря усилиям исландских промышленников и российских инженеров, была создана современная линия по переработке гагачьего пуха, позволяющая получить продукт высочайшего качества. Такое оборудование существует только в двух экземплярах. Одна установка работает в Исландии, другая в России. Из 2,5 тонн собираемого в Исландии гагачьего пуха только 400 кг перерабатывается на вышеупомянутой линии.

Насколько я знаю, гага гнездится по всему побережью Северного Ледовитого океана. В чем же секрет успеха маленькой Исландии?

Секрет прост – это традиция. В Исландии собирают и перерабатывают гагачий пух уже 800 лет, а продают его 300 лет. Существуют исторические факты: датские купцы продавали в России ежегодно до 3 тонн гагачьего пуха вплоть до Октябрьской революции. В те времена Исландия была датской колонией, и исландцы под страхом смерти должны были торговать только с датчанами.

Благодаря заботе человека численность гаги в Исландии не снижается и сегодня. Это единственная страна в мире, где есть законы, регулирующие сбор, переработку и экспорт гагачьего пуха. Местный Закон разрешает сбор гагачьего пуха в период гнездования. В то же самое время природоохранные законы в Финляндии запрещают высаживаться на острова, где гнездится морская птица в период гнездования. Как следствие собранный в Финляндии гагачий пух не имеет коммерческой стоимости.

Так как же собирают гагачий пух в Исландии?

В Исландии земля принадлежит частным лицам, в том числе и острова, находящиеся вблизи береговой линии. Такие острова наиболее привлекательны для гнездования. Птица гнездится из года в год в одном и том же месте, порой даже занимая под гнездо одну и ту же лунку.

Процесс сбора начинается одновременно с началом периода насиживания. Инкубационный период продолжается 21 день, в это время фермеры посещают свои острова и собирают гагачий пух. Во время сбора люди заменяют пух сухим сеном, – этот метод опробован столетиями и не причиняет вреда ни птице, ни её потомству. Степень доверия гаги настолько велика, что порой самку с гнезда можно снять руками.

Сбор пуха – самый первый и наиболее важный этап в технологической цепи. От скорости сбора и доставки гагачьего пуха-сырца на пункт переработки полностью зависит качество гагачьего пуха. Процесс переработки гагачьего пуха я бы сравнил с процессом переработки и упаковки чёрной икры. Как говорится, «Икра, упакованная в декабре – не икра». Так же как икра, высококачественный гагачий пух обрабатывается до конца сентября! Всё, что обработано позже, имеет среднее и низкое качество.

Вы говорили, что в Исландии ежегодно перерабатывают и экспортируют 2.5 тонны чистого гагачьего пуха. Какая же часть имеет наивысшее качество стандарта ТОР quality?

Я думаю, 800 килограммов. Весь этот объём Исландия экспортирует в Японию. Мне пришло в голову ещё одно сравнение. Я бы хотел сравнить гагачий пух с вином. Этот лот, 800 кг, я бы назвал Chateau Lafite, из этого объёма можно сделать, к примеру, всего 700 одеял.

Я думаю, для вас не является секретом тот факт, что первая экспедиция советских альпинистов на Эверест была экипирована изделиями на гагачьем пуху?

Люди, занимавшиеся подготовкой первой российской экспедиции на Эверест, решили использовать в одежде и спальных мешках пух гаги. Их можно понять, ведь гагачий пух – лучший природный материал, обладающий уникальными теплоизоляционными свойствами в сочетании с невероятной легкостью. Я видел пух, из которого были сделаны пуховки для наших альпинистов, и могу сказать, что качество пуха оставляло желать лучшего. Это кустарная обработка и видны все мыслимые и немыслимые нарушения при сборе. У этого пуха не было никакой сцепляемости, а внешний вид говорил о том, что пух не был промыт и быстро испортился.

Значит всё то, что обычно называют гагачьим пухом, в действительности им не является?

Совершенно верно. Так же как не всё золото, что блестит. Нет никакого смысла заниматься сбором гагачьего пуха, если нет современной технологии по переработке гагачьего пуха. Я бы хотел уточнить, что между гагачьим пухом в гнезде, и гагачьим пухом в изделии существует огромная разница. Хотя и то, и другое – гагачий пух.

Давайте попробуем классифицировать:

Гагачий пух, собранный с гнезда. (Eiderdown raw material)
Ничего не стоит без возможности его обработать

Гагачий пух, собранный и обработанный в Финляндии и Канаде. (Low quality eiderdown)
В этих странах отсутствует оборудование для переработки гагачьего пуха. Технология сбора не позволят получить сырьё высокого качества. Такому пуху грош цена. Поэтому этот пух не попадает на международный рынок.

Гагачий пух, собранный и обработанный в Исландии по современной технологии. (Iceland dry processed eiderdown)
Первое – это пух, прошедший дезинфекцию. Второе – из этого пуха удалены все органические примеси. Третье – это 100% гагачий пух, т.е. пух, прошедший ручной контроль, в результате которого полностью удалено перо. Продаётся большими лотами оптовым покупателям из Японии и Европы. Но пух ещё не промыт!

Гагачий пух, промытый и высушенный с использованием технологических линий для промышленной переработки гусиного пуха. Так называемый Европейский стандарт. (Eropean washed eiderdown)
Европейцы закупают гагачий пух под заказ, как правило, зимой. В этом случае они покупают пух среднего и плохого качества. Такой пух можно использовать в готовых изделиях, но он уступает Японскому стандарту.

Японский стандарт. (Japanese washed eiderdown)
Базируется на закупке только пуха высокого качества. Такой пух поступает на Японские фабрики осенью. Затем японцы моют и сушат гагачий пух, используя немецкую технологию для промышленной обработки гусиного пуха. К сожалению, даже высококачественный пух после машиной промывки и сушки скатывается в шарики. В этом случае пух теряет сцепляемость и теплоизоляционные свойства, что сокращает срок эксплуатации.

Русский стандарт гагачьего пуха (Russian hand washed eiderdown).
Разработан нашей лабораторией. Выстроена непрерывная цепочка от сбора до изготовления продукции. Контроль технологического процесса осуществляется на каждом этапе. Пух промыт и высушен вручную. При ручном методе промывки и сушки из гагачьего пуха удаляется вся мелкая взвесь, и структура пушинки не изменяется. Всё это гарантирует высочайшее качество гагачьего пуха. Такого пуха гораздо меньше, чем исландского. При правильной эксплуатации изделие из такого гагачьего пуха может служить двадцать лет и более.

Какой же гагачий пух используют производители пуховых изделий на рынке в России?

Я бы хотел уточнить – на рынке Москвы. Только в Москве можно найти действительно качественное изделие. Хотя и здесь не обходится без курьёзов. Вот, к примеру, уважаемая мною компания Bosco di Chiledgi на своём сайте предлагает изделия для детей на гагачьем пуху. Руководству срочно нужно исправить эту непростительную ошибку и честно написать «качественные детские изделия на гусином или утином пуху». Куртки на гагачьем пуху – это элитарный, штучный товар, и такие куртки шьются исключительно на заказ. Проще заказать костюм от Brioni или купить Aston Martin 77. Я знаю всего несколько человек, которые действительно могут сказать, что они носят одежду и спят под одеялом на гагачьем пуху. Это обладатель «золотого ледоруба» Валерий Бабанов и дизайнер роскошных интерьеров Владимир Фуражкин. Для Валерия гагачий пух – это жизненно важное тепло, так необходимое на восхождениях, для Владимира гагачий пух – это предмет роскоши и комфорта. И тот, и другой используют самый лучший гагачий пух, промытый и высушенный вручную.

Я бы хотел обратить ваше внимание на изделия из гагачьего пуха, которые действительно можно приобрести в Москве. Это одеяла на гагачьем пуху и одежда на заказ. Какие же производители представлены на московском рынке? Я имею в виду только добросовестных производителей, которые гарантированно предлагают изделия из качественного гагачьего пуха. Это всемирно известные немецкие и швейцарские производители пуховых изделий для сна, одна компания из России, с которой мы сотрудничаем по одеялам и одна компания, которая делает одежду из пуха гаги на заказ.

Есть ещё одно преимущество – российский производитель использует только гагачий пух, обработанный нашей лабораторией. А мы, в свою очередь, гарантируем высокое качество за счёт правильного сбора, точного соблюдения технологического процесса механической обработки, а так же ручную промывку и ручную сушку. Всё это обеспечивает длительный срок эксплуатации изделия на гагачьем пуху. Купленное одеяло или сшитую на заказ куртку можно сдать на летнее хранение, при этом вам сделают химчистку куртки и осуществят мелкий ремонт одеяла. За дополнительную плату куртку можно обновлять каждые два года, используя тот же пух. Так же можно поступить с одеялом, причем, если возникнет необходимость, ткань можно заменить.

В этом году наша лаборатория запускает новый продукт, который до этого не был представлен на московском рынке. Первая новинка – это специально созданный термо-чехол из гагачьего пуха для любителей кофе, который модницы могут использовать в холодное время года как муфту. Второе – это шапочка и варежки на гагачьем пуху. В таких варежках рукам гарантирован идеальный термо- и гидробаланс, который может обеспечить только гагачий пух.

Ну и последний вопрос: удовлетворены ли вы той ситуацией с гагачьим пухом, которая существует на рынке России, и что бы вы хотели изменить?

В начале нашей беседы вы сами дали ответ на этот вопрос: в России знают и любят гагачий пух, но при этом не знают, как он выглядит.

Клиенту нужно просвещаться и учится работать с информацией. Я как-то услышал фразу, которую произнёс Леонид Парфёнов в одном из своих интервью. Попробую её воспроизвести: «Информация – это то, что человек нашёл самостоятельно. Всё, что лежит на поверхности – это реклама».

Я буду рад, если это интервью будет воспринято, как «информация».

Мы попросили Валерия Бабанова дать свой комментарий относительно используемой им экипировки на пухе гаги

Пуховку на гагачьем пуху мне подарил Владимир Богданов в 2002 г. Модель пуховки называется Эрцог – она была изготовлена для меня фирмой БАСК.

На восхождения я её не беру – жалко. Знаю, что это очень дорогая штука. Но после восхождения, внизу в базовом лагере, мне очень приятно носить именно эту пуховку. Могу сравнить её с камином. Не знаю, почему так происходит, но тепло, которое идёт от гагачьего пуха, какое-то особое. Приходят на ум такие сравнения для качества тепла: сухое, насыщенное, долгое… В пуховке не жарко, не душно, но очень тепло. Это как в русской бане – при одной и той же температуре пар бывает очень разный. Трудно объяснить на словах, но тело прекрасно различает качество тепла. 

Различия между гагачьей пуховкой и пуховкой на гусином пуху довольно заметны. 

  • Гагачий пух не перемещается в пуховых отсеках: пушинки сцеплены между собой, поэтому не возникает холодных областей. 
  • Когда надеваешь холодную пуховку, тепло становится практически сразу, и это тепло дольше сохраняется. 
  • Гагачий пух расправляется из сжатого состояния почти моментально.  

Не думаю, что в условиях выживания, в которых мне приходилось бывать в последние несколько лет довольно часто, эти различия являются определяющими. Но в условиях релаксации и отдыха мне нужна такая пуховка. Возможно, я стал суеверным, то эта пуховка входит в мой особый набор вещей, которые я отношу к своим талисманам.

Изделия из высококачественного российского гагачего пуха вы может сшить на заказ в НПФ «БАСК»! 

+7 (495) 775-13-13

Интервью подготовлено при поддержке сайта Гагачий пух

Читайте также:
Дикий пух. Как мы собираем лучший пух в мире
«Настоящий гагачий пух». Джон Свейнссон
«Гагачий пух». Эдвард Поснетт

Виды теплообмена | Физика

Внутреннюю энергию тела можно изменить двумя способами: путем совершения работы и путем теплообмена. Теплообмен может осуществляться по-разному. Различают три вида теплообмена: теплопроводность, конвекция и лучистый теплообмен.

1. Теплопроводность — это вид теплообмена, при котором происходит непосредственная передача энергии от частиц более нагретой части тела к частицам его менее нагретой части При теплопроводности само вещество не перемещается вдоль тела — переносится лишь энергия.

Обратимся к опыту. Закрепим в штативе толстую медную проволоку, а к проволоке прикрепим воском (или пластилином) несколько гвоздиков (рис. 63). При нагревании свободного конца проволоки в пламени спиртовки воск плавится и гвоздики постепенно отпадают от проволоки. Причем сначала отпадают те, которые расположены ближе к пламени, затем по очереди все остальные. Объясняется это следующим образом.

Сначала увеличивается скорость движения тех частиц металла, которые ближе к пламени. Температура проволоки в этом месте повышается. При взаимодействии этих частиц с соседними скорость последних также увеличивается, в результате чего повышается температура следующей части проволоки. Затем увеличивается скорость движения следующих частиц и т. д., пока не прогреется вся проволока.

Различные вещества имеют разную теплопроводность: у одних она больше, у других — меньше. Из жизненного опыта известно, что если, например, взять какой-либо железный предмет (допустим, гвоздь) и начать нагревать его в огне, то долго удерживать его в руке мы не сможем. И наоборот, горящую спичку можно держать до тех пор, пока пламя не коснется руки. Это означает, что дерево обладает меньшей теплопроводностью, чем железо.

Наибольшей теплопроводностью обладают металлы, особенно серебро и медь. У жидкостей (за исключением расплавленных металлов) теплопроводность невелика. У газов она еще меньше, так как молекулы их находятся сравнительно далеко друг от друга и передача энергии от одной частицы к другой затруднена.

Если теплопроводность различных веществ сравнить с теплопроводностью меди, то окажется, что у железа она примерно в 5 раз меньше, у воды — в 658 раз меньше, у пористого кирпича — в 840 раз меньше, у свежевыпавшего снега — почти в 4000 раз меньше, у ваты, древесных опилок и овечьей шерсти — почти в 10 ООО раз меньше, а у воздуха она примерно в 20 000 раз меньше.

Плохая теплопроводность шерсти, пуха и меха (обусловленная наличием между их волокнами воздуха) позволяет телу животного сохранять вырабатываемую организмом энергию и тем самым защищаться от охлаждения. Защищает от холода и жировой слой, который имеется у водоплавающих птиц, китов, моржей, тюленей и некоторых других животных.

2. Конвекция — это теплообмен в жидких и газообразных средах, осуществляемый потоками (или струями) вещества.

Общеизвестно, например, что жидкости и газы обычно нагревают снизу. Чайник с водой ставят на огонь, радиаторы отопления помещают под окнами около пола. Случайно ли это?

Поместив руку над горячей плитой или над включенной лампой, мы почувствуем, что от плиты или лампы вверх поднимаются теплые струи воздуха. Эти струи могут даже вращать небольшую бумажную вертушку, помещенную над лампой (рис. 64). Откуда берутся эти струи?

Часть воздуха, которая соприкасается с плитой или лампой, нагревается и вследствие этого расширяется. Ее плотность становится меньше, чем у окружающей (более холодной) среды, и под действием архимедовой (выталкивающей) силы она начинает подниматься вверх. Ее место внизу заполняет холодный воздух. Через некоторое время, прогревшись, этот слой воздуха также поднимается вверх, уступая место следующей порции воздуха, и т. д. Это и есть конвекция.

Точно так же переносится энергия и при нагревании жидкости. Чтобы заметить перемещение слоев жидкости при нагревании, на дно стеклянной колбы с водой опускают кристаллик красящего вещества (например, перманганата калия) и колбу ставят на огонь. Через некоторое время нагретые нижние слои воды, окрашенные перманганатом калия в фиолетовый цвет, начинают подниматься вверх (рис. 65). На их место приходит холодная вода, которая, прогревшись, также начинает подниматься вверх, и т. д. Постепенно вся вода оказывается нагретой. Именно благодаря конвекции происходит нагревание воздуха и в наших жилых комнатах (рис. 66).

Будут ли прогреваться воздух и жидкость, если их нагревать не снизу, а сверху? Обратимся к опыту. Поместив в пробирку кусочек льда и придавив его гайкой или металлической сеточкой, нальем туда же холодную воду. Нагревая ее сверху, можно довести верхние слои воды до кипения (рис. 67), между тем как нижние слои воды останутся холодными (и даже лед там не растает). Объясняется это тем, что при таком способе нагревания конвекции не происходит. Нагретым слоям воды некуда подниматься: ведь они и так уже наверху. Нижние же (холодные) слои так и останутся внизу. Правда, вода может прогреться благодаря теплопроводности, однако она очень низкая, так что пришлось бы долго ждать, пока это произошло бы.

Точно так же можно объяснить, почему не прогревается воздух, находящийся в пробирке, которая изображена на рисунке 68. Горячим он становится лишь сверху, внизу же он остается холодным.

Опыты, изображенные на рисунках 67 и 68, показывают не только то, что жидкости и газы следует нагревать снизу, но и то, что у них очень плохая теплопроводность.

3. Лучистый теплообмен — это теплообмен, при котором энергия переносится различными лучами. Это могут быть солнечные лучи, а также лучи, испускаемые нагретыми телами, находящимися вокруг нас.

Так, например, сидя около камина или костра, мы чувствуем, как тепло передается от огня нашему телу. Однако причиной такой теплопередачи не может быть ни теплопроводность (которая у воздуха, находящегося между пламенем и телом, очень мала), ни конвекция (так как конвекционные потоки всегда направлены вверх). Здесь имеет место третий вид теплообмена —лучистый теплообмен.

Возьмем теплоприемник — прибор, представляющий собой плоскую круглую коробочку, одна сторона которой отполирована, как зеркало, а другая покрыта черной матовой краской. Внутри коробочки находится воздух, который может выходить через специальное отверстие. Соединим теплоприемник с жидкостным манометром (рис. 69) и поднесем к теплоприемнику электрическую плитку или кусок металла, нагретый до высокой температуры. Мы заметим, что столбик жидкости в манометре переместится. Но это означает, что воздух в теплоприемнике нагрелся и расширился. Нагревание воздуха в теплоприемнике можно объяснить лишь передачей ему энергии от нагретого тела. Каким образом передавалась эта энергия? Ясно, что не теплопроводностью, так как между нагретым телом и теплоприемником находится воздух, обладающий малой теплопроводностью. Не было здесь и конвекции: ведь теплоприемник расположен не над нагретым телом, а рядом с ним. Энергия в данном случае передавалась с помощью невидимых лучей, испускаемых нагретым телом. Эти лучи называют тепловым излучением.

С помощью теплового излучения (как видимого, так и невидимого) передается на Землю и солнечная энергия. Отличительной особенностью этого вида теплообмена является возможность осуществления через вакуум.

Тепловое излучение испускают все тела: электрическая плитка, лампа, земля, стакан с чаем, тело человека и т. д. Но у тел с низкой температурой оно слабое. И наоборот, чем выше температура тела, тем больше энергии оно передает путем излучения.

Когда излучение, распространяясь от тела-источника, достигает других тел, то часть его отражается, а часть ими поглощается. При поглощении энергия теплового излучения превращается во внутреннюю энергию тел, и они нагреваются.

Светлые и темные поверхности тел поглощают излучение по-разному. Если теплоприемник (см. рис. 69) повернуть к излучающему телу сначала черной, а затем блестящей поверхностью, то столбик жидкости в манометре в первом случае переместится на большее расстояние, чем во втором. Это показывает, что тело с темной поверхностью лучше поглощает энергию (и, следовательно, сильнее нагревается), чем тело со светлой или зеркальной поверхностью.

Тела с темной поверхностью не только лучше поглощают, но и лучше излучают энергию. Больше излучая, они и остывают быстрее. Например, в темном чайнике горячая вода остывает быстрее, чем в светлом.

Способность по-разному поглощать энергию излучения находит широкое применение в технике. Например, воздушные шары и крылья самолетов часто красят серебристой краской, чтобы они меньше нагревались солнечными лучами. Если же нужно использовать солнечную энергию (например, для нагревания некоторых приборов, установленных на искусственных спутниках), то эти устройства окрашивают в темный цвет.

1. Перечислите виды теплообмена. 2. Что такое теплопроводность? У каких тел она лучше, у каких хуже? 3. Как вы думаете, о чем свидетельствует опыт, изображенный на рисунке 70? 4. Что такое конвекция? 5. Почему жидкости и газы нагревают снизу? 6. Почему конвекция невозможна в твердых телах? 7. Какой вид теплообмена может осуществляться через вакуум? 8. Как устроен теплоприемник? 9. Какие тела лучше и какие хуже поглощают энергию теплового излучения? 10. Почему в светлом чайнике горячая вода дольше не остывает, чем в темном?

Экспериментальные задания. 1. Находясь дома, на улице или в транспорте, проверьте, какие предметы на ощупь кажутся более холодными. Что вы можете сказать об их теплопроводности? Составьте на основе своих наблюдений ряд из названий материалов в порядке возрастания их теплопроводности. 2. Включите электрическую лампу и поднесите к ней (не касаясь лампы) руку. Что вы чувствуете? Какой из видов теплообмена происходит в данном случае? 3. Греет ли шуба? Для выяснения этого возьмите термометр и, заметив его показание, закутайте в шубу. Спустя полчаса выньте его. Изменились ли показания термометра? Почему?

Эксперимент подтверждающий малую теплопроводность бумаги. Исследовательская работа «теплопроводность»

Вариант
1.

Оборудование:

Пробирка с водой и спиртовка.

Для
демонстрации плохой теплопроводности
жидкости в пробирку
на ¾ объема наливают воды. Держа пробирку
в руках под небольшим
углом над пламенем спиртовки, нагревают
воду у открытого конца
(рис. 130). Показывают, что вода здесь
быстро закипает, однако
внизу большого нагрева не ощущается.

Рис.
130 Рис. 2.105
Рис.
131

Опыт 4. Теплопроводность газов

Вариант
1
. Оборудование:
две пробирки, две пробки, два стержня,
два шарика, спиртовка, штатив, подвес.

Плохую
теплопроводность воздуха демонстрируют
с помощью двух одинаковых пробирок,
закрытых пробками, через которые
пропущены короткие стержни. К концам
стержней прикрепляют пластилином или
парафином стальные шарики (рис. 131).
Про­бирки над спиртовкой располагают
так, чтобы в одной из них про­исходила
конвекция, а в другой теплопроводность
воздуха. Замечают, что в одной пробирке
ша­рик быстро отпадает от стержня.

Вариант
2.
См. рис.
2.105

Опыт 5. Конвекция жидкостей

Вариант
1.

Оборудование:

прибор для демонстрации конвекции
жидкости, марганцовокислый
калий, спиртовка, штатив.

Прибор,
представляющий собой замкнутую стеклянную
трубку
(рис. 132), укрепляют в лапке штатива.
(Лучше подвесить,
чем зажимать трубку в нижней части, ибо
в последнем случае
больше вероятности разрушить стекло.)
Через верхнее отверстие
любого колена трубку наполняют водой
так, чтобы по всему
замкнутому пути внутри трубки не было
пузырьков воздуха.

При
выполнении опыта в ложечку
с сеткой помещают
кристаллики марганцовокислого
калия и oпускают
ее в колено (можно
одновременно опустить две
ложечки с кристалликами
марганцовокислого
калия в оба колена).
Затем к нижней части
этого колена подносят
спиртовку и наблюдают
конвекцию.

Рис. 132
Рис. 133

Опыт 6. Конвекция газов

Вариант
1.

Оборудование:

спиртовка,
спички, бумажная змейка, металлическое
острие.

Для
демонстрации конвекции
газа изготовляют бумажную
змейку, которая
вращается в потоке восходящего
горячего воздуха,
идущего от спиртовки или электроплитки
(рис. 133). (При установке
змейки на острие нельзя прокалывать
бумагу.)

Опыт 7. Нагревание излучением

Вариант
1.

Оборудование:

теплоприемник, манометр открытый
демонстрацион­ный,
настольная лампа (или электроплитка).

Теплоприемник,
соединенный трубкой с демонстрационным
мано­метром
(см. рис. 123), укрепляют в штативе напротив
излучателя. В качестве излучающего тела
можно взять электроплитку, сосуд с
горячей водой и пр. К нему сбоку подносят
теплоприемник темной
стороной и наблюдают за показаниями
манометра в тече­ние
1-2 мин.

Затем
поворачивают теплоприемник блестящей
по­верхностью
к лампе, расположенной на том же расстоянии
от теплоприемника, и в течение того же
времени следят за показанием манометра.
Делают вывод.

Во
второй серии опытов накал лампы (или
расстояние до излучателя) уменьшают и
вновь наб­людают изменение показаний
манометра в прежних условиях. Делают
вывод.

Вариант
2.

См. Рис. 2.99; 2.101.

Вопрос.

В каком случае изменение показаний
жидкостного манометра

происходит
быстрее, если теплопередатчик и
теплоприемник обращены друг к другу
блестящими поверхностями или если они
об­ращены
друг к другу зачерненными поверхностями?

Рис.
123 Рис. 2.101
Рис. 2.99

Внимание! Администрация сайта сайт не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

  • Участник:
    Шароглазова Ксения Сергеевна
  • Руководитель: Печерская Светлана Юрьевна

Цель данной работы: изучение явления теплопроводности, проделав ряд опытов с твердыми телами, жидкостями и газами.

Актуальность:
В наше время разрабатываются новые материалы. Знания о теплопроводности различных веществ позволяет не только широко использовать их, но и предотвращать их вредное воздействие в быту, технике и природе.

Цель:
изучение явления теплопроводности, проделав ряд опытов с твердыми телами, жидкостями и газами.

Задачи:

  • изучить теоретический материал по данному вопросу;
  • исследовать теплопроводность твердых тел;
  • исследовать теплопроводность жидкостей;
  • исследовать теплопроводность газов;
  • сделать выводы о полученных результатах.

Гипотеза:
все вещества (твердые, жидкие и газообразные) имеют разную теплопроводность.

Оборудование:
спиртовка, штатив, деревянная палочка, стеклянная палочка, медная проволока, пробирка с водой.

Элементы УМК к учебнику А.В.Перышкина:
учебник «Физика. 8 класс» А.В.Перышкина

Внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку. Явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте называется теплопроводностью.

Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом.

Видео: https://cloud.mail.ru/public/JCFY/CFTcCeqhE

.
Исследование теплопроводности твердых тел на примере деревянной палочки, стеклянной палочки и медного стержня

Внесем в огонь конец деревянной палки. Он воспламенится.

Вывод:
дерево обладает плохой теплопроводностью.

Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец останется холодным.

Вывод:
стекло имеет плохую теплопроводность.

Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем.

Вывод:
металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь.

Рассмотрим передачу тепла от одной части твердого тела к другой на следующем опыте. Закрепим один конец толстой медной проволоки в штативе. К проволоке прикрепим воском несколько гвоздиков (рис. 6). При нагревании свободного конца проволоки в пламени спиртовки воск будет таять. Гвоздики начнут постепенно отваливаться. Сначала отпадут те, которые расположены ближе к пламени, затем по очереди все остальные.

Выясним, как происходит передача энергии по проволоке. Скорость колебательного движения частиц металла увеличивается в той части проволоки, которая ближе расположена к пламени. Поскольку частицы постоянно взаимодействуют друг с другом, то увеличивается скорость движения соседних частиц. Начинает повышаться температура следующей части проволоки и т. д. Следует помнить, что при теплопроводности не происходит переноса вещества от одного конца тела к другому.

Опыт 2. Исследование теплопроводности жидкостей на примере воды

Рассмотрим теперь теплопроводность жидкостей. Возьмем пробирку с водой и станем нагревать ее верхнюю часть. Вода у поверхности скоро закипит, а у дна пробирки за это время она только нагреется (рис. 7). Значит, у жидкостей теплопроводность невелика, за исключением ртути и расплавленных металлов. Это объясняется тем, что в жидкостях молекулы расположены на больших расстояниях друг от друга, чем в твердых телах.

Вывод:
теплопроводность жидкостей меньше теплопроводности металлов.

Опыт 3. Исследование теплопроводности газов

Исследуем теплопроводность газов.

Сухую пробирку наденем на палец и нагреем в пламени спиртовки донышком вверх (рис. 8). Палец при этом долго не почувствует тепла. Это связано с тем, что расстояние между молекулами газа еще больше, чем у жидкостей и твердых тел.

Вывод
:
теплопроводность у газов еще меньше, чем у жидкостей. Итак, теплопроводность у различных веществ различна.

Выводы и их обсуждение

Вывод:
Проведенные опыты показывают, что теплопроводность у различных веществ различна. Наибольшей теплопроводность обладают металлы, у жидкостей теплопроводность невелика и самая малая теплопроводность у газов.

Используя §4 учебника физики для 8 класса, представим результаты в виде таблицы:

Объяснение явления теплопроводности с молекулярно-кинетической точки зрения:
теплопроводность — это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В металлах частицы расположены близко, они постоянно взаимодействуют друг с другом. Скорость колебательного движения в нагретой части металла увеличивается и быстро передается соседним частицам. Повышается температура следующей части проволоки. В жидкостях и газах молекулы расположены на больших расстояниях, чем в металлах. В пространстве, где нет частиц, теплопроводность осуществляться не может.

Применение теплопроводности

Теплопроводность на кухне

Теплопроводность и ее регулировка важны в процессе приготовления пищи. Часто во время тепловой обработки продукта необходимо поддерживать высокую температуру, поэтому на кухне используют металлы (медь, алюминий…), так их теплопроводность и прочность выше, чем у других материалов. Из металла делают кастрюли, сковородки, противни, и другую посуду. Когда они соприкасаются с источником тепла, это тепло легко передается пище. Иногда бывает необходимо уменьшить теплопроводность — в этом случае используют кастрюли из материалов с более низкой теплопроводностью, или готовят способами, при которых пище передается меньшее количество тепла. Приготовление блюд на водяной бане — один из примеров уменьшения теплопроводности. Для посуды, предназначенной для приготовления пищи, не всегда используют материалы с высокой теплопроводностью. В духовом шкафу, например, часто используют керамическую посуду, теплопроводность которой намного ниже, чем у металлической посуды. Их самое главное преимущество — способность держать температуру. Хороший пример использования материалов с высокой теплопроводностью на кухне — плита. Например, конфорки электроплиты сделаны из металла, чтобы обеспечить хорошую передачу тепла от раскаленной спирали нагревательного элемента к кастрюле или сковородке. Люди используют материалы с низкой теплопроводностью между руками и посудой, чтобы не обжечься. Ручки многих кастрюль сделаны из пластмасс, а противни вынимают из духовки прихватками из ткани или пластмассы с низкой теплопроводностью.

Материалы с невысокой теплопроводностью также используют для поддержания температуры пищи неизменной. Так, например, чтобы утренний кофе или суп, который берут в путешествие или на обед на работу, оставался горячим, его наливают в термос, чашку или банку с хорошей теплоизоляцией. Чаще всего в них пища остается горячей (или холодной) благодаря тому, что между их стенками находится материал, плохо проводящий тепло. Это может быть пенопласт или воздух, который находится в закрытом пространстве между стенками сосуда. Он не дает теплу перейти в окружающую среду, пище — остыть, а рукам — получить ожог. Пенопласт используют также для стаканчиков и контейнеров для пищи навынос. В вакуумном сосуде Дьюара (известном как «термос», по названию торговой марки) между наружной и внутренней стенкой почти нет воздуха — это еще больше уменьшает теплопроводность.

Отопительная система

Задача любой системы отопления является эффективная передача энергии от теплоносителя (горячей воды) в помещение. Для этого используют специальные элементы системы отопления – радиаторы. Радиаторы предназначены для повышения теплопередачи накопившейся в системе тепловой энергии в помещение. Они представляют собой секционную или монолитную конструкцию, внутри которой циркулирует теплоноситель. Основные характеристики радиатора отопления: материал изготовления, тип конструкции, габаритные размеры (кол-во секций), теплоотдача. Чем выше этот показатель, тем меньше тепловых потерь будет при передаче энергии от теплоносителя в помещение. Лучший материал для изготовления радиаторов – это медь. Наиболее часто используют чугунные радиаторы; алюминиевые радиаторы; стальные радиаторы; биметаллические радиаторы.

Теплопроводность для тепла

Мы используем материалы с низкой теплопроводностью для поддержания постоянной температуры тела. Примеры таких материалов — шерсть, пух, и синтетическая шерсть. Кожа животных покрыта мехом, а птиц — пухом с низкой теплопроводностью, и мы заимствуем эти материалы у животных или создаем похожие на них синтетические ткани, и делаем из них одежду и обувь, которые защищают нас от холода. Кроме этого мы делаем одеяла, так как спать под ними удобнее, чем в одежде. Воздух имеет низкую теплопроводность, но проблема с холодным воздухом в том, что обычно он может свободно двигаться в любом направлении. Он вытесняет теплый воздух вокруг нас, и нам становится холодно. Если движение воздуха ограничить, например, заключив его между внешней и внутренней стенками сосуда, то он обеспечивает хорошую термоизоляцию. У снега и льда тоже низкая теплопроводность, поэтому люди, животные и растения используют их для теплоизоляции. В свежем не утрамбованном снеге внутри находится воздух, что еще больше уменьшает его теплопроводность, особенно потому, что теплопроводность воздуха ниже теплопроводности снега. Благодаря этим свойствам, ледяной и снежный покров защищает растения от замерзания. Животные роют ямки и целые пещеры для зимовья в снегу. Путешественники, переходящие через заснеженные районы, иногда роют подобные пещеры, чтобы в них переночевать. С древнейших времен люди строили убежища изо льда, а сейчас создают целые развлекательные центры и гостиницы. В них часто горит огонь, и люди спят в мехах и синтетических спальных мешках.

Для обеспечения нормальной жизнедеятельности в организме людей и животных необходимо поддерживать определенную температуру в очень узких пределах. У крови и других жидкостей, а также у тканей разная теплопроводность и ее можно регулировать в зависимости от потребностей и окружающей температуры. Так, например, организм может изменить количество крови на участке тела или во всем организме с помощью расширения или сужения сосудов. Наше тело также может сгущать и разжижать кровь. При этом теплопроводность крови, а, следовательно, и части тела, где эта кровь течет, изменяется.

Теплолечение

Современные методы лечения теплом могут быть разделены на три большие группы: 1) контактное приложение нагретых сред; 2) светотепловое облучение и 3) использование теплоты, образующейся в тканях при прохождении высокочастотного электрического тока. Остановимся на использовании нагретых сред. Для теплолечения выбираются среды, позволяющие создать в них значительный запас теплоты. Эта теплота затем должна медленно и постепенно передаваться организму во все время процедуры. Для этого среда должна иметь, возможно, высокую теплоемкость и сравнительно низкие теплопроводность и конвекционную способности. Для теплолечения в основном применяют следующие среды: воздух, воду, торф, лечебные грязи и парафин.

Теплопроводность в бане

Многие любят отдыхать в саунах или банях, но сидеть там на скамейках из материала с высокой теплопроводностью — было бы невозможно. Требуется много времени, чтобы сравнять температуру таких материалов с температурой тела, поэтому вместо них используют материалы с низкой теплопроводностью, например дерево, верхние слои которого намного быстрее принимают температуру тела. Так как в сауне температура поднимается достаточно высоко, люди часто надевают на голову шапочки из шерсти или войлока, чтобы защитить голову от жары. В турецких банях хамамах температура намного ниже, поэтому там для скамеек используют материал с более высокой теплопроводностью — камень.

Тепло ли колючим зверям в иголках?

Шерсть не только спасает зверей от холода, но и служит средством защиты. А чтобы защита была внушительнее и надежнее, волосяной покров порой видоизменяется, превращаясь в своеобразные доспехи. Иглы, например. Но вот сохраняет ли такое облачение присущие шерсти свойства, не зябнут ли ежи и дикобразы в своих колючих шубках?

Ученые Института проблем экологии и эволюции им. А.Н. Северова РАН обстоятельно изучили теплопроводные и теплоизоляционные свойства иголок, взятых со спины взрослого самца североамериканского дикобраза из коллекции Зоологического музея МГУ, и убедились, что греют эти самые иголки очень даже неплохо. Чтобы понять внутреннюю структуру игл, на них делали тонкие срезы, на которые напыляли золото для исследования в электронном микроскопе. Кератин — главная составляющая иголок — проводит тепло в 10 раз лучше, чем воздух. И благодаря этому иглы увеличивают теплопроводность «доспехов». Следовательно, возрастают и потери тепла с тела животного. Однако внутренняя пористая структура игл создает дополнительное экранирование теплового излучения, что, скорее всего, и компенсирует увеличение теплопроводности. Так что дикобраз, как и другие колючие звери, вовсе не страдает от холода. Иглистый покров сохраняет ровно столько тепла, сколько нужно теплокровному животному такого размера.

Полипропилен

Пока является лучшей основой для материалов (волокон, нитей, пряжи, полотен, тканей), используемых в производстве нательной спортивной одежды, термобелья и термоносков. Среди всех синтетических материалов, применяемых в этой области, он обладает самой низкой теплопроводностью. Поэтому одежда из полипропилена позволяет наилучшим образом сохранить тепло зимой и прохладу летом.

Какой материал имеет самую высокую теплопроводность?

Материалом с наивысшей теплопроводностью является вовсе не какой-нибудь металл (серебро или медь), как думают многие. Самую высокую теплопроводность имеет материал, который похож на стекло – алмаз. Его теплопроводность почти в 6 раз больше, чем у серебра или меди. Если изготовить чайную ложечку из алмаза, то воспользоваться ею не удастся, так как она будет обжигать пальцы в ту же секунду.

Из чего изготавливают сваи при строительстве зданий в регионах с вечной мерзлотой?

Большие трудности строителям зданий доставляет просадка фундамента особенно в регионах с вечной мерзлотой. Дома часто дают трещины из-за подтаивания грунта под ними. Фундамент передает почве какое-то количество теплоты. Поэтому здания начали строить на сваях. В этом случае тепло передается только теплопроводностью от фундамента свае и далее от сваи грунту. Из чего же надо делать сваи? Оказывается, сваи, выполненные из прочного твердого материала, внутри должны быть заполнены керосином. Летом свая проводит тепло сверху вниз плохо, т.к. жидкость обладает низкой теплопроводностью. Зимой свая за счет конвекции жидкости внутри неё, наоборот, будет способствовать дополнительному охлаждению грунта.

«Огнеупорный шарик»

Обычный воздушный шарик, надутый воздухом, легко воспламеняется в пламени свечи. Он тут же лопается. Если же к пламени свечи поднести такой же шарик, заполненный водой, он становится «огнеупорным». Теплопроводность воды в 24 раза больше, чем у воздуха. Значит, вода проводит тепло в 24 раза быстрее, чем воздух. Пока вода не испарится внутри шарика – он не лопнет.

Коробицын Денис

Теплопроводность различных материалов при увеличении температуры нагрева.

Скачать:

Предварительный просмотр:

IВВЕДЕНИЕ

Однажды, я задал вопрос маме, почему она всегда дает нам деревянные ложки, когда мы садимся кушать. Она ответила, что деревянные нагреваются медленнее, чем железные и ими не обожжешься. Я задумался, ведь я замечал, что металлические предметы очень быстро нагреваются, а вот почему? Оказалось, что у всех твердых материалов есть такое свойство, называется – теплопроводность. Мне стало интереснокакие материалы проводят тепло быстрее, а какие медленнее, и что случится если увеличить температуру нагрева, будут ли эти материалы нагреваться в таком же порядке?

Гипотеза: я думаю, что разные материалы имеют разную теплопроводность и что с увеличением температуры нагрева, они будут нагреваться в том же порядке.

Объект: теплопроводность.

Предмет: теплопроводность некоторых материалов.

Цель: Определить, почему по-разному нагреваются различные предметы, притом, что они нагревались в одинаковых условиях, но были изготовлены из разных материалов.

Задачи:

1) изучить литературу и материалы интернета по вопросу теплопроводности материалов;

2) провести опыт, с целью определения, теплопроводности материалов;

3) познакомить одноклассников с изученной темой.

Для реализации данных задач и подтверждения гипотезы:

  1. Подберу научную литературу по
    по вопросу теплопроводности материалов;
  2. Изучу данную литературу и сделаю выводы;
  3. Для подтверждения теоритических выводов проведу зксперемент;
  4. По результатам эксперимента сделаю выводы;
  5. С результатами данных выводов познакомлю одноклассников

II ОСНОВНАЯ ЧАСТЬ

2.1 Что такое теплопроводность?

Основной источник тепла на Земле — Солнце. Но, кроме того, люди используют много искусственных источников тепла: костер, печку, водяное отопление, газовые и электрические нагреватели и т.д.

Ответить на вопрос, что такое теплота, удалось не сразу. Лишь в XVIII веке стало ясно, что все тела состоят из молекул, что молекулы движутся и взаимодействуют друг с другом. Тогда ученые поняли, что теплота связана со скоростью движения молекул. При нагревании тел скорость молекул увеличивается, а при охлаждении — уменьшается.

Вы знаете, что если в горячий чай опустить холодную ложку, через некоторое время она нагреется. Из примера ясно, что тепло может передаваться от тела более нагретого к телу менее нагретому.

Теплопроводность
– перенос энергии от более нагретых участков тела к менее нагретым, в результате теплового движения и взаимодействия частиц.

Плохой теплопроводностью обладают шерсть, волосы, перья птиц, бумага, пробка и другие пористые тела. Это связано с тем, что между волокнами этих веществ содержится воздух. Самой низкой теплопроводностью обладает вакуум (освобожденное от воздуха пространство).

1. Снег — пористое, рыхлое вещество, в нем содержится воздух. Поэтому снег обладает плохой теплопроводностью и хорошо защищает землю, озимые посевы, плодовые деревья от вымерзания.

2. Кухонные прихватки сшиты из материала, который обладает плохой теплопроводностью. Ручки чайников, кастрюль делают из материалов обладающих плохой теплопроводностью. Все это защищает руки от ожогов, при прикосновении к горячим предметам.

3. Вещества с хорошей теплопроводностью (металлы) используют для быстрого нагревания тел или деталей.

2.1 Проведение эксперимента

Для проведения эксперимента мне понадобилось: стеклянная миска, деревянная, металлическая и пластмассовая ложка, стеклянная трубка, пластилин, фишки, маргарин, секундомер, лист для записи результатов и ручка.

Приготовив все необходимые материалы я приступил к проведению опыта. Я установил ложки и стеклянную трубку вертикально в миску и прикрепил их с помощью пластилина к краям миски. Затем с помощью одинаковых кубиков маргарина я прикрепил фишки к каждому предмету. Далее заполнил миску теплой водой и включил секундомер. Я рассчитывал провести опыт с теплой водой, а затем с кипятком.

После того, как прошло 10 минут, а не одна фишка не сдвинулась с места, я решил, что температура воды недостаточная, для того, чтобы растопить маргарин.

Я слил теплую воду и аккуратно залил кипяток, включил секундомер. Далее я записал, в какой последовательности соскальзывали фишки с предметов:

металлическая ложка – 52 секунды;

стеклянная трубка – 4 минуты 13 секунд;

пластмассовая ложка – 5 минут 7 секунд;

деревянная ложка – 6 минут 18 секунд.

Хочу добавить, что когда соскользнула фишка с металлической ложки, через две минуты я добавил еще кипятка, потому, что маргарин под остальными фишками не таял.

Таким образом, я выяснил, что лучшим проводником тепла является металл, а хуже всех выбранных материалов тепло проводит деревянные предметы. Это значит, что металл имеет высокую теплопроводность, он быстро нагревается и быстро остывает, а дерево наоборот имеет низкую теплопроводность, медленно нагревается и медленно остывает. Еще, я заметил, металлическая ложка нагрелась меньше, чем за минуту, другие предметы нагревались гораздо дольше, это значит, что металл проводит тепло очень быстро, в отличии от пластмасса, стекла и дерева.

III ЗАКЛЮЧЕНИЕ

Таким образом, в результате проведенной работы я выяснил, что теплопроводность это свойство твердых материалов, которое позволяет оценить, как быстро нагревается и остывает тот или иной материал.

В результате проведения опыта было установлено, что самая высокая теплопроводность у металлических предметов, затем у стекла, далее упластмасса и самой маленькой теплопроводностью обладает дерево.

Гипотезу удалось проверить частично, так как температура теплой воды была мала и первую часть опыта провести не удалось. Однако во второй части опыта мы подтвердили гипотезу — разные материалы имеют разную теплопроводность.

IV СПИСОК ЛИТЕРАТУРЫ

1. А. В. Перышкин, Учебник физики — М.: Дрофа, 2010г, — с.11-14

2. Материалы сайта http://class-fizika.narod.ru/8_3.htm

3. Материалы сайта http://elementy.ru/trefil/21095

4. Материалы сайта http://www.fizika.ru/kniga/index.ph

5. Материалы сайта http://class-fizika.spb.ru/index.php/opit/726-op-teplpr

Предварительный просмотр:

I ВВЕДЕНИЕ……………………………………………………………………………………..3

II ОСНОВНАЯ ЧАСТЬ…………………………….……………………………………………4

2.1 Что такое теплопроводность…………………………………………………………………4

2.2. Проведение эксперимента…………………………………………………………………..5

III ЗАКЛЮЧЕНИЕ……………………………………………………………………………….6

IV СПИСОК ЛИТЕРАТУРЫ……………………………………………………………………7

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com

Подписи к слайдам:

Муниципальное автономное образовательное учреждение «Средняя общеобразовательная школа №8 с углубленным изучением отдельных предметов г.Назарово Красноярского края» Теплопроводность материалов Автор: Коробицын Денис 4«В » класс Руководитель: Адольф Е.Я., учитель начальных классов Назарово 2015

Цель: определить, почему по-разному нагреваются различные предметы, притом, что они нагревались в одинаковых условиях, но были изготовлены из разных материалов. Гипотеза: я думаю, разные материалы имеют разную теплопроводность и что с увеличением температуры нагрева, они будут нагреваться в том же порядке.

Задачи: 1) изучить литературу и материалы интернета по вопросу теплопроводности материалов; 2) провести опыт, с целью определения теплопроводности материалов; 3) познакомить одноклассников с изученной темой.

В 18 веке ученые поняли, что теплота связана со скоростью движения молекул. При нагревании тел скорость молекул увеличивается, а при охлаждении уменьшается. Тепло передается от более нагретого тела к менее нагретому.

Теплопроводность – перенос энергии от более нагретых участков тела к менее нагретым, в результате теплового движения и взаимодействия частиц.

Плохой теплопроводностью обладают шерсть, волосы, перья птиц, бумага, пробка и другие пористые тела. Это связано с тем, что между волокнами этих веществ содержится воздух.

Для проведения эксперимента мне понадобилось: стеклянная миска, деревянная, металлическая и пластмассовая ложка, стеклянная трубка, пластилин, фишки, маргарин, секундомер, лист для записи результатов и ручка.

Последовательность соскальзывания фишки с предметов: металлическая ложка – 52 секунды; стеклянная трубка – 4 минуты 13 секунд; пластмассовая ложка – 5 минут 7 секунд; деревянная ложка – 6 минут 18 секунд.

Самая высокая теплопроводность у металла, это значит он быстро нагревается и быстро остывает. Вторым по теплопроводности оказалось стекло, третий – пластмасс. Самая плохая теплопроводность у дерева, оно медленно нагревается и медленно остывает.

Гипотезу удалось проверить частично, так как температура теплой воды была мала и первую часть опыта провести не удалось. Однако во второй части опыта я подтвердил гипотезу — разные материалы имеют разную теплопроводность.

СПАСИБО ЗА ВНИМАНИЕ!

Тема урока:
Урок занимательной физики

по теме «тепловые явления»

Цели урока
:

1. Обучающая: систематизировать знания учащихся по теме «Тепловые явления» и продемонстрировать учащимся занимательные эксперименты с помощью самодельного оборудования.

2. Воспитывающая:

3. Развивающая: развивать логику, четкость и краткость речи, физическую терминологию, навыки обобщения, общую эрудицию учащихся.

Оборудование:

Демонстрации:

План урока

    Организационный момент

    Постановка цели урока

    Актуализация знаний

    Демонстрация занимательных экспериментов и их объяснение на основе пройденного ранее материала

    Домашнее задание

    Итог урока

Ход урока

    Организационный момент

    Постановка цели урока

На протяжении нескольких уроков мы с вами рассматривали различные тепловые процессы и учились объяснять их на основе современных знаний по физике.

Сегодня на уроке мы с вами рассмотрим ряд занимательных экспериментов по этой теме и объясним наблюдаемое на основе имеющихся у нас знаний.

    Актуализация знаний

Но с начала давайте вспомним изученный ранее нами материал.

Вопросы:

    1. Какие явления называются тепловыми?

      Приведите примеры тепловых явлений?

      Что характеризует температура?

      Как связана температура тела со скоростью движения его молекул?

      Чем отличается движение молекул в газах, жидкостях и твердых телах?

    Демонстрация занимательных экспериментов

Физика вокруг нас! Мы встречаемся с нею повсюду. А какие опыты можно провести дома не используя дорогостоящие приборы и оборудование? Очень простые — занимательные…

Эксперимент №1

«Фокус для новогодней ночи»

Этот фокус лучше всего показывать в новогоднюю ночь в комнате, освещенной лишь елочной гирляндой. Фокусник берет со стола две свечи. Он соединяет их фитилями, произносит «магическое заклинание» — и вот… в месте контакта фитилей появляется дымок, а вслед за ним и огонь. Фокусник разводит свечи в стороны — они горят! В чем секрет фокуса?

Ответ:


Кто увлекается химией, наверно, уже додумался, в чем секрет фокуса — в самовоспламеняющейся смеси. Перед демонстрацией фокуса, приготовьте реквизиты, для этого нужно посыпать фитиль одной из свеч, порошком перманганата калия (марганцовкой), а другой пропитать жидким глицерином. Помните, воспламенение происходит не сразу, требуется некоторое время. Будьте осторожны. Огонь-то настоящий.

Эксперимент №2

« КИПЯТИЛЬНИК»

Может ли кипеть вода при комнатной температуре?

Для ответа на этот вопрос проведём такой опыт: Наполнил одноразовый медицинский шприц, в котором отсутствовала игла, на 1/8 водой. Затем закроем пальцем отверстие и резко вытянем поршень до крайнего положения. Вода внутри шприца «закипела», оставаясь холодной. Почему «кипит» вода?

Ответ:


Температура кипения зависит от давления. Чем меньше давление газа над поверхностью жидкости, тем ниже температура кипения этой жидкости.

Эксперимент №3

«Не может быть?»

Для опыта сварите вкрутую яйцо.
Очистите его от скорлупы. Возьмите листок бумаги размером
80 на 80 мм, сверните его гармошкой и подожгите. Затем опустите горящую бумагу в бутылку с широким горлом.
Через 1-2 сек горлышко накройте яйцом (см.рис) .Горение бумаги прекращается, и яйцо начинает втягиваться в графин. Объясните наблюдаемое явление.

Ответ:


При горении бумаги воздух в нутрии бутылки нагрелся и расширился. Когда пламя потухло, воздух в бутылке охладился и соответственно, его давление уменьшилось, и атмосферное давление затолкнуло яйцо внутрь бутылки.

Замечание
:



Этот опыт можно сделать интереснее, если в горлышко бутылки вставить не до конца очищенный банан. Втягиваясь в бутылку, он одновременно и очистится

Эксперимент №4

«Ползущий стакан»

Возьмите чистое оконное стекло длиной около 30 — 40 см. Под один край стекла подложите два спичечных коробка, так, чтобы образовалась наклонная плоскость. Смочите водой край стакана из тонкого стекла и поставить вверх дном на стекло. Поднести к стенке стакана горящую свечу и стакан медленно поползет. Как это объяснить?

Ответ:


Это объясняется тем, что при нагревании воздух внутри стакана расширяется и чуть приподнимает стакан. Вода мешает воздуху выйти из стакана наружу, в результате сила трения между стаканом и стеклом уменьшается и стакан ползет вниз.

Эксперимент №5

«Наблюдение испарения и конденсации»

Эксперимент №6

Пронаблюдайте конвекцию в холодной и горячей воде, используя в качестве красителя кристаллы марганцовки, каплю зеленки или любые другие красящие вещества. Сравните характер и скорость конвекции и сделайте выводы

Эксперимент №7

Интересно, что…

Самый длительный в истории научных исследований эксперимент проходит в одном из университетов Австралии. Первый декан физического факультета этого университета Т.Парнелл еще в 1927 г. расплавил немного битума, залил его в воронку с пробкой на конце, дал ему в течение трех лет охладиться и отстояться, а затем вынул пробку. С тех пор в среднем 1 раз в 9 лет из воронки падает капля смолы в подставленный внизу стакан. Последняя капля упала на Рождество в 1999 г. Полагают, что воронка опустеет не раньше, чем еще через 100 лет.

НАРОДНАЯ МУДРОСТЬ

Пословицы:

«Много снега — много хлеба» Почему?

Ответ:


Снег, обладает плохой теплопроводностью, т.е. снег является «шубой» для земли, он сохраняет ее тепло. Шуба толстая, мороз не доберется до озимых, предохранит их от вымерзания.

«Без крышки самовар не кипит, без матери ребенок не резвиться». Почему самовар без крышки долго не закипает?

Ответ:


При открытой крышке часть молекул, имеющих большую кинетическую энергию, будет улетать с поверхности воды, унося с собой энергию.

«Замерз — как на дне морском.» А почему на морском дне всегда холодно?

Ответ:


Солнечные лучи не прогревают глубокие слои воды: тепловые, инфракрасные лучи — поглощаются почти все водной поверхностью. Кроме того, вода имеет сравнительно низкую теплопроводность.

Задачи – загадки

Зимой — греет, весной — тлеет, летом — умирает, осенью — летает.
(Снег.)

Мир обогревает, усталости не знает.
(Солнце.)

Как энергия Солнца достигает Земли?

Ответ.

Излучением. (Электромагнитными волнами)

Висит груша — нельзя скушать; не бойся — тронь, хоть внутри и огонь.
(Электрическая лампочка.
)

Без ног бежит, без огня горит.
(Электричество.)

Как Солнце горит, быстрее ветра летит, дорога в воздухе лежит, по силе себе равных не имеет.
(Молния.)

Кто не учившись, говорит на всех языках?
(Эхо.)

По морю идет, идет, а до берега дойдет — тут и пропадет.
(Волна.)

Вокруг носа вьется, а в руки не дается.
(Запах.)

Без крыльев, без тела за тысячу верст прилетела.
(Радиоволна.
)

Как можно пронести воду в решете?
(Заморозив воду.)

    Домашнее задание

Приготовьте в морозилке лед. Сложите его в целлофановый пакет и оберните пуховым платком или обложите ватой. Можно дополнительно завернуть в шубу. Оставьте этот сверток на 5–7 ч, затем проверьте сохранность льда. Объясните наблюдаемое состояние.

Предложите дома способ сохранения замороженных продуктов при размораживании холодильника.

    Итог урока

Сегодня на уроке мы с вами вспомнили, что такое тепловые явления, пронаблюдали примеры тепловых явлений на опытах, поставленных с помощью элементарного, подручного оборудования и объяснили эти явления.

Подведение итогов урока, выставление оценок.

Внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим.
Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку. Явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте называется теплопроводностью.

Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом. Внесем в огонь конец деревянной палки. Он воспламенится. Другой конец палки, находящийся снаружи, будет холодным. Значит, дерево обладает плохой теплопроводностью. Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец останется холодным. Следовательно, и стекло имеет плохую теплопроводность. Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем. Значит, металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь.
Рассмотрим передачу тепла от одной части твердого тела к другой на следующем опыте. Закрепим один конец толстой медной проволоки в штативе. К проволоке прикрепим воском несколько гвоздиков (рис. 6). При нагревании свободного конца проволоки в пламени спиртовки воск будет таять. Гвоздики начнут постепенно отваливаться. Сначала отпадут те, которые расположены ближе к пламени, затем по очереди все остальные. Выясним, как происходит передача энергии по проволоке. Скорость колебательного движения частиц металла увеличивается в той части проволоки, которая ближе расположена к пламени. Поскольку частицы постоянно взаимодействуют друг с другом, то увеличивается скорость движения соседних частиц. Начинает повышаться температура следующей части проволоки и т. д. Следует помнить, что при теплопроводности не происходит переноса вещества от одного конца тела к другому. Рассмотрим теперь теплопроводность жидкостей. Возьмем пробирку с водой и станем нагревать ее верхнюю часть. Вода у поверхности скоро закипит, а у дна пробирки за это время она только нагреется (рис. 7). Значит, у жидкостей теплопроводность невелика, за исключением ртути и расплавленных металлов. Это объясняется тем, что в жидкостях молекулы расположены на больших расстояниях друг от друга, чем в твердых телах. Исследуем теплопроводность газов.
Сухую пробирку наденем на палец и нагреем в пламени спиртовки донышком вверх (рис. 8). Палец при этом долго не почувствует тепла. Это связано с тем, что расстояние между молекулами газа еще больше, чем у жидкостей и твердых тел. Следовательно, теплопроводность у газов еще меньше. Итак, теплопроводность у различных веществ различна. Опыт, изображенный на рисунке 9, показывает, что теплопроводность у различных металлов неодинакова. Плохой теплопроводностью обладают шерсть, волосы, перья птиц, бумага, пробка и другие пористые тела. Это связано с тем, что между волокнами этих веществ содержится воздух. Самой низкой теплопроводностью обладает вакуум (освобожденное от воздуха пространство).

Объясняется это тем, что теплопроводность — это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц.
В пространстве, где нет частиц, теплопроводность осуществляться не может. Если возникает необходимость предохранить тело от охлаждения или нагревания, то применяют вещества с малой теплопроводностью. Так, для кастрюль, сковородок ручки изготавливают из пластмассы. Дома строят из бревен или кирпича, обладающих плохой теплопроводностью, а значит, предохраняют помещения от охлаждения.

Строительные и изоляционные материалы «4 Стихии» в Александрове на СКИДКОМ.РФ

Строительные и изоляционные материалы «4 Стихии» в Александрове

Ищете где купить изоляционные и строительные материалы для технической изоляции, огнезащиты строительных конструкций или термозащиты? Не знаете какая компания в Александрове продаёт качественные материалы по выгодным ценам? Советуем вам обратиться в компанию «4 Стихии»! Материалы для термозащиты, звукоизоляции и даже гидроизоляции — это то, чем мы занимаемся на протяжении долгих лет и предоставляем нашим клиентам большой выбор изоляционных и строительных материалов по низким ценам, гарантируя 100% качество предоставленных товаров. Если вы не знаете какой товар из ассортимента подойдёт для Вас, то наши квалифицированные специалисты помогут в данном вопросе и подберут нужный товар для Вас. За огромным ассортиментом высококачественных строительных и изоляционных материалов обращайтесь только в компанию «4 Стихии»!

Каталог товаров компании 4 Стихии

Антисептические средства

Антисептики для древесины

Антисептики для бетона

Что такое изоляционные материалы?

На сегодняшний день изоляционные материалы находят широкое применение в строительстве и ремонте. Основные виды изоляционных материалов: теплоизоляция, звукоизоляция, гидроизоляция, термозащита. Теплоизоляционные материалы — строительные материалы, применяемые для теплоизоляции строительных конструкций жилых, производственных зданий, поверхностей оборудования и промышленных агрегатов, средств транспорта. Эти материалы обладают малой теплопроводностью и позволяют снизить потери теплоты, сохранить необходимый температурный режим, снизить расход топлива, а в строительстве — уменьшить толщину стен, кровли, тем самым уменьшить расход строительных материалов и вес конструкции. 

Огнебиозащита

для древесины

Огнезащитные пропитки

для тканей

Защита и тонирование

древесины

Преимущества компании «4 Стихии»

Сотрудничая с нашей компанией, Вы можете быть уверены в качестве и надежности предлагаемой продукции! 

Мы гарантируем нашим клиентам профессиональные консультации и самое качественное обслуживание.

  • Широкий ассортимент. Большой выбор высокоэффективных материалов — широкого спектра применения.
  • Прямые поставки. Прямые договора с заводами-изготовителями — изоляционных материалов.
  • Гарантия качества. Гарантированное качество всей продукции. Вся продукция сертифицирована.
  • Оптимальные цены. Максимально выгодные цены на все виды покрытий. Скидки и акции.
  • Профессиональные консультации. Опытные квалифицированные специалисты ответят на все интересующие Вас вопросы.
  • Скидки и акции. Широкая и гибкая система скидок для — постоянных клиентов компании.
  • Удобная оплата. Возможность оплаты товара удобными способами: наличными или на расчетный счет.
  • Оперативная доставка. Быстрая и удобная доставка ваших заказов по всей территории Российской Федерации.

Закажите обратный звонок, и мы обязательно с вами свяжемся!

Почему стоит покупать изоляционные материалы в компании  «4 Стихии»?

  • Мы предлагаем нашим клиентам широкий выбор изоляционных материалов, которые доказали свою надежность и проверены временем. Сотрудники нашей компании готовы предоставить Вам полную информацию о интересующем Вас товар, помогут подобрать аналогичные материалы, просчитают доставку до Вашего объекта.
  • Не секрет, что на многих объектах одним из важных факторов при выборе поставщика изоляционных материалов является стабильность и скорость поставок при оптимальной цене. Именно поэтому одним из важнейших факторов, которому мы уделяем особое внимание — это оперативность отгрузки и лояльность для всех наших заказчиков. На данный момент существует широкая система скидок и постоянные клиенты всегда могут рассчитывать индивидуальное отношение и ценовую политику.
  • Мы ценим нашу репутацию качественного и удобного поставщика, и уверены, что главное условие успешной работы и роста любой компании — ответственность перед Клиентом.
  • Компания «4 Стихии» всегда рада предложить Вам сотрудничество и взаимовыгодные условия. Мы рады новыми поставщиками и всегда открыты для Ваших предложений и пожеланий!

Купите изоляционные и строительные материалы в Александрове в компании «4 Стихии»- гарантируем качественную и оперативную работу! Любые подробности по телефону.

Телефон: +7(4922)60-02-37 +7(930)838-87-97

Теплопроводность
k —
Вт / (м · К)
Материал / вещество Температура
25 o C
(77 o F)
125 o C
(257 o F)
225 o C
(437 o F)
Acetals 0.23
Ацетон 0,16
Ацетилен (газ) 0,018
Акрил 0,2
Воздух, атмосфера (газ) 0,0262 0,0333 0,0398
Воздух, высота над уровнем моря 10000 м 0,020
Агат 10,9
Спирт 0.17
Глинозем 36 26
Алюминий
Алюминий Латунь 121
Оксид алюминия 30
Аммиак (газ) 0,0249 0,0369 0,0528
Сурьма 18,5
Яблоко (85.6% влаги) 0,39
Аргон (газ) 0,016
Асбестоцементная плита 1) 0,744
Асбестоцементные листы 1) 0,166
Асбестоцемент 1) 2,07
Асбест в рыхлой упаковке 1) 0.15
Асбестовая плита 1) 0,14
Асфальт 0,75
Бальсовое дерево 0,048
Битум 0,14
Слои битума / войлока 0,5
Говядина постная (влажность 78,9%) 0.43 — 0,48
Бензол 0,16
Бериллий
Висмут 8,1
Битум 0,17
Доменный газ (газ) 0,02
Шкала котла 1,2 — 3,5
Бор 25
Латунь
Бризовый блок 0.10 — 0,20
Кирпич плотный 1,31
Кирпич огневой 0,47
Кирпич изоляционный 0,15
Кирпич обыкновенный (Строительный кирпич ) 0,6 -1,0
Кирпичная кладка плотная 1,6
Бром (газ) 0,004
Бронза
Коричневая железная руда 0.58
Масло (влажность 15%) 0,20
Кадмий
Силикат кальция 0,05
Углерод 1,7
Двуокись углерода (газ) 0,0146
Окись углерода 0,0232
Чугун
Целлюлоза, хлопок, древесная масса и регенерированная 0.23

Ацетат целлюлозы, формованный, лист

0,17 — 0,33
Нитрат целлюлозы, целлулоид 0,12 — 0,21
Цемент, Портленд 0,29
Цемент, строительный раствор 1,73
Керамические материалы
Мел 0.09
Древесный уголь 0,084
Хлорированный полиэфир 0,13
Хлор (газ) 0,0081
Хром никелевая сталь 16,3
Хром
Оксид хрома 0,42
Глина, от сухой до влажной 0.15 — 1,8
Глина насыщенная 0,6 — 2,5
Уголь 0,2
Кобальт
Треск (влажность 83% содержание) 0,54
Кокс 0,184
Бетон, легкий 0,1 — 0,3
Бетон, средний 0.4 — 0,7
Бетон, плотный 1,0 — 1,8
Бетон, камень 1,7
Константан 23,3
Медь
Кориан (керамический наполнитель) 1,06
Пробковая плита 0,043
Пробка, повторно гранулированная 0.044
Пробка 0,07
Хлопок 0,04
Вата 0,029
Углеродистая сталь
Утеплитель из шерсти 0,029
Купроникель 30% 30
Алмаз 1000
Диатомовая земля (Sil-o-cel) 0.06
Диатомит 0,12
Дуралий
Земля, сухая 1,5
Эбонит 0,17 11,6
Моторное масло 0,15
Этан (газ) 0.018
Эфир 0,14
Этилен (газ) 0,017
Эпоксидный 0,35
Этиленгликоль 0,25
Перья 0,034
Войлок 0,04
Стекловолокно 0.04
Волокнистая изоляционная плита 0,048
Древесноволокнистая плита 0,2
Огнеупорный кирпич 500 o C 1,4
Фтор (газ) 0,0254
Пеностекло 0,045
Дихлордифторметан R-12 (газ) 0.007
Дихлордифторметан R-12 (жидкость) 0,09
Бензин 0,15
Стекло 1.05
Стекло, жемчуг, жемчуг 0,18
Стекло, жемчуг, насыщенное 0,76
Стекло, окно 0.96
Стекло-вата Изоляция 0,04
Глицерин 0,28
Золото
Гранит 1,7 — 4,0
Графит 168
Гравий 0,7
Земля или почва, очень влажная зона 1.4
Земля или почва, влажная зона 1,0
Земля или почва, сухая зона 0,5
Земля или почва, очень сухая зона 0,33
Гипсокартон 0,17
Волос 0,05
ДВП высокой плотности 0.15
Лиственные породы (дуб, клен ..) 0,16
Hastelloy C 12
Гелий (газ) 0,142
Мед ( 12,6% влажности) 0,5
Соляная кислота (газ) 0,013
Водород (газ) 0,168
Сероводород (газ) 0.013
Лед (0 o C, 32 o F) 2,18
Инконель 15
Чугун 47-58
Изоляционные материалы 0,035 — 0,16
Йод 0,44
Иридий 147
Железо
Оксид железа 0 .58
Капок изоляция 0,034
Керосин 0,15
Криптон (газ) 0,0088
Свинец
, сухой 0,14
Известняк 1,26 — 1,33
Литий
Магнезиальная изоляция (85%) 0.07
Магнезит 4,15
Магний
Магниевый сплав 70-145
Мрамор 2,08 — 2,94
Ртуть, жидкость
Метан (газ) 0,030
Метанол 0.21
Слюда 0,71
Молоко 0,53
Изоляционные материалы из минеральной ваты, шерстяные одеяла .. 0,04
Молибден
Монель
Неон (газ) 0,046
Неопрен 0.05
Никель
Оксид азота (газ) 0,0238
Азот (газ) 0,024
Закись азота (газ) 0,0151
Нейлон 6, Нейлон 6/6 0,25
Масло машинное смазочное SAE 50 0,15
Оливковое масло 0.17
Кислород (газ) 0,024
Палладий 70,9
Бумага 0,05
Парафиновый воск 0,25
Торф 0,08
Перлит, атмосферное давление 0,031
Перлит, вакуум 0.00137
Фенольные литые смолы 0,15
Формовочные смеси фенолформальдегид 0,13 — 0,25
Фосфорбронза 110 Pinchbe20 159
Шаг 0,13
Карьерный уголь 0.24
Гипс светлый 0,2
Гипс, металлическая планка 0,47
Гипс песочный 0,71
Гипс, деревянная планка 0,28
Пластилин 0,65 — 0,8
Пластмассы вспененные (изоляционные материалы) 0.03
Платина
Плутоний
Фанера 0,13
Поликарбонат 0,19
Полиэстер
Полиэтилен низкой плотности, PEL 0,33
Полиэтилен высокой плотности, PEH 0.42 — 0,51
Полиизопреновый каучук 0,13
Полиизопреновый каучук 0,16
Полиметилметакрилат 0,17 — 0,25
Полипропилен
Полистирол вспененный 0,03
Полистирол 0.043
Пенополиуритан 0,03
Фарфор 1,5
Калий 1
Картофель, сырое мясо 0,55
Пропан (газ) 0,015
Политетрафторэтилен (ПТФЭ) 0,25
Поливинилхлорид, ПВХ 0.19
Стекло Pyrex 1,005
Кварц минеральный 3
Радон (газ) 0,0033
Красный металл
Рений
Родий
Порода, твердая 2-7
Порода, вулканическая порода (туф) 0.5 — 2,5
Изоляция из каменной ваты 0,045
Канифоль 0,32
Резина, ячеистая 0,045
Резина натуральная 0,13
Рубидий
Лосось (влажность 73%) 0,50
Песок сухой 0.15 — 0,25
Песок влажный 0,25 — 2
Песок насыщенный 2-4
Песчаник 1,7
Опилки 0,08
Селен
Овечья шерсть 0,039
Аэрогель кремнезема 0.02
Кремниевая литьевая смола 0,15 — 0,32
Карбид кремния 120
Кремниевое масло 0,1
Серебро
Шлаковая вата 0,042
Сланец 2,01
Снег (температура <0 o C) 0.05 — 0,25
Натрий
Хвойные породы (пихта, сосна ..) 0,12
Почва, глина 1,1
Почва, с органическими вещество 0,15 — 2
Грунт насыщенный 0,6 — 4

Припой 50-50

50

Сажа

0.07

Насыщенный пар

0,0184
Пар низкого давления 0,0188
Стеатит 2
Сталь углеродистая
Сталь, нержавеющая сталь
Изоляция из соломенных плит, сжатая 0,09
Пенополистирол 0.033
Диоксид серы (газ) 0,0086
Сера кристаллическая 0,2
Сахара 0,087 — 0,22
Тантал

Смола 0,19
Теллур 4,9
Торий
Древесина, ольха 0.17
Лес, ясень 0,16
Лес, береза ​​ 0,14
Лес, лиственница 0,12
Лес, клен 0,16
Древесина дубовая 0,17
Древесина осина 0,14
Древесина оспа 0.19
Древесина, бук красный 0,14
Древесина, сосна красная 0,15
Древесина, сосна белая 0,15
Древесина ореха 0,15
Олово
Титан
Вольфрам
Уран
Пенополиуретан 0.021
Вакуум 0
Гранулы вермикулита 0,065
Виниловый эфир 0,25
Вода, пар (пар) 0,0267 0,0359
Пшеничная мука 0.45
Белый металл 35-70
Древесина поперек волокон, белая сосна 0,12
Древесина поперек волокон, бальза 0,055
Древесина поперек волокон, сосна желтая, древесина 0,147
Дерево, дуб 0,17
Шерсть, войлок 0.07
Древесная вата, плита 0,1 — 0,15
Ксенон (газ) 0,0051
Цинк

Материал

Электропроводность
Вт / м- ° C

Плотность
кг / м 3

Удельная теплоемкость
Дж / кг- ° C

АБС-пластик

0,25

1.014 x 10 3

1,26 x 10 3

Ацетали

0.3

1,42 x 10 3

1,5 x 10 3

Акрил

0,06

1,19 x 10 3

1,5 x 10 3

Алкиды

0,85

2,0 x 10 3

1.3 х 10 3

Глинозем, 96%

21,0

3,8 x 10 3

880,0

Глинозем чистый

37,0

3,9 x 10 3

880,0

Асбест, листы асбестовые

0.166

Асбест, цемент

2,08

Асбест, цементные плиты

0,74

Асбест комбинированный, 4 слоя / дюйм

0.087

Асбест, войлок, 20 лам / дюйм

0,078

Асбест, войлок, 40 лам / дюйм

0,057

Асбест в свободной упаковке

0.154

520,0

Асфальт

0,75

Бакелит

0,19

Бальзам шерсть 2,2 фунта / фут 3

0.04

35,0

Бериллия, 99,5%

197,3

Кирпич, Строительный кирпич

0,69

1,6 x 10 3

Кирпич, Карборундовый кирпич

18.5

Кирпич, Хромированный кирпич

2,32

3,0 x 10 3

Кирпич, Кизельгур

0,24

Кирпич, Лицевой кирпич

1.32

2,0 x 10 3

Кирпич шамотный

1.04

2,0 x 10 3

Кирпич, магнезит

3,81

Углерод

6.92

Картон, Celotex

0,048

Картон гофрированный

0,064

Цемент, Строительный раствор

1.16

Cement, Портленд

0,29

1,5 x 10 3

Бетон, Шлак

0,76

Бетон, Камень 1-2-4 смесь

1.37

2,1 x 10 3

Пробка, пробковая доска, 10 фунтов / фут 3

0,043

160,0

Пробка молотая

0,043

150,0

Пробка, регранулированная

0.045

80,0

Diamond, пленка

700,0

3,5 x 10 3

2,0 x 10 3

Алмаз, тип IIA

2,0 x 10 3

Алмаз, тип IIB

1.3 х 10 3

Диатомовая земля

0,061

320,0

E-Стекловолокно

0,89

2,54 x 10 3

820,0

Эпоксидная смола с высоким заполнением

2.163

Эпоксидная смола, без заливки

0,207

Войлок, Волосы

0,036

265,0

Войлок, шерсть

0.052

330,0

Волокнистая изоляционная плита

0,048

240,0

FR4 Эпоксидное стекло, медь 1 унция

9,11

FR4 Эпоксидное стекло, 2 унции меди

17.71

FR4 Эпоксидное стекло, 4 унции меди

35,15

FR4 Эпоксидное стекло, без меди

0,294

1,9 x 10 3

1,15 x 10 3

Стекло боросиликатное

1.09

2,2 x 10 3

Стекло, Pyrex

1.02

2,23 x 10 3

837,0

Стекло Окно

0,78

2,7 x 10 3

Стекло, шерсть, 1.5 фунтов / фут 3

0,038

24,0

Инсулекс сухой

0,064

Капок

0,035

Каптон

0.156

1,09 x 10 3

Магнезия, 85%

0,067

270,0

Слюда

0,71

Майлар

0.19

Нейлон

0,242

1,1 x 10 3

1,7 x 10 3

Фенольные, на бумажной основе

0,277

Фенольный простой

0.519

Гипс, гипс

0,48

1,44 x 10 3

Гипс Металлическая планка

0,47

Штукатурка, рейка

0.28

Оргстекло

0,19

Поликарбонат

0,19

1,2 x 10 3

1,3 x 10 3

Полиэтилен высокой плотности

0.5

950,0

2,3 x 10 3

Полиэтилен низкой плотности

0,35

920,0

2,3 x 10 3

Полиэтилен средней плотности

0,4

930,0

2.3 х 10 3

Полистирол

0,106

Поливинилхлорид

0,16

Pyrex

1,26

Минеральная вата, 10 фунтов / фут 3

0.04

160,0

Минеральная вата, насыпная упаковка

0,067

64,0

Резина бутиловая

0,26

Твердая резина

0.19

Резина, силикон

0,19

Резина, мягкая

0,14

Опилки

0.059

S-стекловолокно

0,9

2,49 x 10 3

835,0

Кремнеземный аэрогель

0,024

140,0

Кремний, 99.9%

150,0

2,33 x 10 3

710,0

Силиконовая смазка

0,21

Камень, гранит

2,8

2,64 x 10 3

Камень, известняк

1.3

2,5 x 10 3

Камень, Мрамор

2,5

2,6 x 10 3

Камень, песчаник

1,83

2,2 x 10 3

пенополистирол

0.035

Тефлон

0,22

1,04 x 10 3

Стружка

0,059

Дерево, поперечное зерно, бальза, 8.8 фунтов / фут 3

0,055

140,0

Дерево, перекрестное зерно, кипарис

0,097

460,0

Дерево, поперечное зерно, ель

0,11

420,0

Дерево, поперечное зерно, клен

0.166

540,0

Дерево, Cross Grain, Дуб

0,166

540,0

Дерево, Cross Grain, Белая сосна

0,112

430,0

Дерево, поперечное зерно, желтая сосна

0.147

640,0

Оксид алюминия, Al 2 O 3, 99,5%

32,0

Оксид алюминия, Al 2 O 3, 96%

21,5

Оксид алюминия, Al 2 O 3, 90%

12.0

Материал Теплопроводность
(Вт / м · К) при ~ 300 К
Удельная теплоемкость
(Дж / кг · К)
Плотность
(кг / м 3)
Кирпич 0,7 840 1600
Бетон — плотный 1.4 840 2100
Бетон — легкое литье 0,4 1000 1200
Гранит 1,7 — 3,9 820 2600
Стекло (окно) 0,8 880 2700
Твердая древесина (дуб) 0,16 1250 720
Хвойные породы (сосна) 0.12 1350 510
Поливинилхлорид 0,12 — 0,25 1250 1400
Бумага 0,04 1300 930
Акустическая плитка 0,06 1340 290
ДСП (низкой плотности) 0,08 1300 590
ДСП (высокой плотности) 0.17 1300 1000
Стекловолокно 0,04 700 150
Пенополистирол 0,03 1200 50

Обычные металлы, ранжированные по теплопроводности
Рейтинг Металл Теплопроводность [БТЕ / (ч · фут⋅ ° F)]
1 Медь 223
2 Алюминий 118
3 Латунь 64
4 Сталь 17
5 бронза 15