Какие материалы обладающие малой теплопроводностью вы знаете: 1. Какие материалы, обладающие малой теплопроводностью, вы знаете? Какие их них используются
ABS (АБС пластик) | 1030…1060 | 0.13…0.22 | 1300…2300 |
Аглопоритобетон и бетон на топливных (котельных) шлаках | 1000…1800 | 0.29…0.7 | 840 |
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—72 | 1100…1200 | 0.21 | — |
Альфоль | 20…40 | 0.118…0.135 | — |
Алюминий (ГОСТ 22233-83) | 2600 | 221 | 897 |
Асбест волокнистый | 470 | 0.16 | 1050 |
Асбестоцемент | 1500…1900 | 1.76 | 1500 |
Асбестоцементный лист | 1600 | 0.4 | 1500 |
Асбозурит | 400…650 | 0.14…0.19 | — |
Асбослюда | 450…620 | 0.13…0.15 | — |
Асботекстолит Г ( ГОСТ 5-78) | 1500…1700 | — | 1670 |
Асботермит | 500 | 0. 116…0.14 | — |
Асбошифер с высоким содержанием асбеста | 1800 | 0.17…0.35 | — |
Асбошифер с 10-50% асбеста | 1800 | 0.64…0.52 | — |
Асбоцемент войлочный | 144 | 0.078 | — |
Асфальт | 1100…2110 | 0.7 | 1700…2100 |
Асфальтобетон (ГОСТ 9128-84) | 2100 | 1.05 | 1680 |
Асфальт в полах | — | 0.8 | — |
Ацеталь (полиацеталь, полиформальдегид) POM | 1400 | 0.22 | — |
Аэрогель (Aspen aerogels) | 110…200 | 0.014…0.021 | 700 |
Базальт | 2600…3000 | 3.5 | 850 |
Бакелит | 1250 | 0.23 | — |
Бальза | 110…140 | 0.043…0.052 | — |
Береза | 510…770 | 0.15 | 1250 |
Бетон легкий с природной пемзой | 500…1200 | 0. 15…0.44 | — |
Бетон на гравии или щебне из природного камня | 2400 | 1.51 | 840 |
Бетон на вулканическом шлаке | 800…1600 | 0.2…0.52 | 840 |
Бетон на доменных гранулированных шлаках | 1200…1800 | 0.35…0.58 | 840 |
Бетон на зольном гравии | 1000…1400 | 0.24…0.47 | 840 |
Бетон на каменном щебне | 2200…2500 | 0.9…1.5 | — |
Бетон на котельном шлаке | 1400 | 0.56 | 880 |
Бетон на песке | 1800…2500 | 0.7 | 710 |
Бетон на топливных шлаках | 1000…1800 | 0.3…0.7 | 840 |
Бетон силикатный плотный | 1800 | 0.81 | 880 |
Бетон сплошной | — | 1.75 | — |
Бетон термоизоляционный | 500 | 0.18 | — |
Битумоперлит | 300…400 | 0. 09…0.12 | 1130 |
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74) | 1000…1400 | 0.17…0.27 | 1680 |
Блок газобетонный | 400…800 | 0.15…0.3 | — |
Блок керамический поризованный | — | 0.2 | — |
Бронза | 7500…9300 | 22…105 | 400 |
Бумага | 700…1150 | 0.14 | 1090…1500 |
Бут | 1800…2000 | 0.73…0.98 | — |
Вата минеральная легкая | 50 | 0.045 | 920 |
Вата минеральная тяжелая | 100…150 | 0.055 | 920 |
Вата стеклянная | 155…200 | 0.03 | 800 |
Вата хлопковая | 30…100 | 0.042…0.049 | — |
Вата хлопчатобумажная | 50…80 | 0.042 | 1700 |
Вата шлаковая | 200 | 0. 05 | 750 |
Вермикулит (в виде насыпных гранул) ГОСТ 12865-67 | 100…200 | 0.064…0.076 | 840 |
Вермикулит вспученный (ГОСТ 12865-67) — засыпка | 100…200 | 0.064…0.074 | 840 |
Вермикулитобетон | 300…800 | 0.08…0.21 | 840 |
Воздух сухой при 20°С | 1.205 | 0.0259 | 1005 |
Войлок шерстяной | 150…330 | 0.045…0.052 | 1700 |
Газо- и пенобетон, газо- и пеносиликат | 280…1000 | 0.07…0.21 | 840 |
Газо- и пенозолобетон | 800…1200 | 0.17…0.29 | 840 |
Гетинакс | 1350 | 0.23 | 1400 |
Гипс формованный сухой | 1100…1800 | 0.43 | 1050 |
Гипсокартон | 500…900 | 0.12…0.2 | 950 |
Гипсоперлитовый раствор | — | 0. 14 | — |
Гипсошлак | 1000…1300 | 0.26…0.36 | — |
Глина | 1600…2900 | 0.7…0.9 | 750 |
Глина огнеупорная | 1800 | 1.04 | 800 |
Глиногипс | 800…1800 | 0.25…0.65 | — |
Глинозем | 3100…3900 | 2.33 | 700…840 |
Гнейс (облицовка) | 2800 | 3.5 | 880 |
Гравий (наполнитель) | 1850 | 0.4…0.93 | 850 |
Гравий керамзитовый (ГОСТ 9759-83) — засыпка | 200…800 | 0.1…0.18 | 840 |
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка | 400…800 | 0.11…0.16 | 840 |
Гранит (облицовка) | 2600…3000 | 3.5 | 880 |
Грунт 10% воды | — | 1.75 | — |
Грунт 20% воды | 1700 | 2.1 | — |
Грунт песчаный | — | 1. 16 | 900 |
Грунт сухой | 1500 | 0.4 | 850 |
Грунт утрамбованный | — | 1.05 | — |
Гудрон | 950…1030 | 0.3 | — |
Доломит плотный сухой | 2800 | 1.7 | — |
Дуб вдоль волокон | 700 | 0.23 | 2300 |
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83) | 700 | 0.1 | 2300 |
Дюралюминий | 2700…2800 | 120…170 | 920 |
Железо | 7870 | 70…80 | 450 |
Железобетон | 2500 | 1.7 | 840 |
Железобетон набивной | 2400 | 1.55 | 840 |
Зола древесная | 780 | 0.15 | 750 |
Золото | 19320 | 318 | 129 |
Известняк (облицовка) | 1400…2000 | 0.5…0.93 | 850…920 |
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) | 300…400 | 0. 067…0.11 | 1680 |
Изделия вулканитовые | 350…400 | 0.12 | — |
Изделия диатомитовые | 500…600 | 0.17…0.2 | — |
Изделия ньювелитовые | 160…370 | 0.11 | — |
Изделия пенобетонные | 400…500 | 0.19…0.22 | — |
Изделия перлитофосфогелевые | 200…300 | 0.064…0.076 | — |
Изделия совелитовые | 230…450 | 0.12…0.14 | — |
Иней | — | 0.47 | — |
Ипорка (вспененная смола) | 15 | 0.038 | — |
Каменноугольная пыль | 730 | 0.12 | — |
Камень керамический поризованный Braer 14,3 НФ и 10,7 НФ | 810…840 | 0.14…0.185 | — |
Камни многопустотные из легкого бетона | 500…1200 | 0.29…0.6 | — |
Камни полнотелые из легкого бетона DIN 18152 | 500…2000 | 0. 32…0.99 | — |
Камни полнотелые из природного туфа или вспученной глины | 500…2000 | 0.29…0.99 | — |
Камень строительный | 2200 | 1.4 | 920 |
Карболит черный | 1100 | 0.23 | 1900 |
Картон асбестовый изолирующий | 720…900 | 0.11…0.21 | — |
Картон гофрированный | 700 | 0.06…0.07 | 1150 |
Картон облицовочный | 1000 | 0.18 | 2300 |
Картон парафинированный | — | 0.075 | — |
Картон плотный | 600…900 | 0.1…0.23 | 1200 |
Картон пробковый | 145 | 0.042 | — |
Картон строительный многослойный (ГОСТ 4408-75) | 650 | 0.13 | 2390 |
Картон термоизоляционный (ГОСТ 20376-74) | 500 | 0.04…0.06 | — |
Каучук вспененный | 82 | 0. 033 | — |
Каучук вулканизированный твердый серый | — | 0.23 | — |
Каучук вулканизированный мягкий серый | 920 | 0.184 | — |
Каучук натуральный | 910 | 0.18 | 1400 |
Каучук твердый | — | 0.16 | — |
Каучук фторированный | 180 | 0.055…0.06 | — |
Кедр красный | 500…570 | 0.095 | — |
Кембрик лакированный | — | 0.16 | — |
Керамзит | 800…1000 | 0.16…0.2 | 750 |
Керамзитовый горох | 900…1500 | 0.17…0.32 | 750 |
Керамзитобетон на кварцевом песке с поризацией | 800…1200 | 0.23…0.41 | 840 |
Керамзитобетон легкий | 500…1200 | 0.18…0.46 | — |
Керамзитобетон на керамзитовом песке и керамзитопенобетон | 500…1800 | 0. 14…0.66 | 840 |
Керамзитобетон на перлитовом песке | 800…1000 | 0.22…0.28 | 840 |
Керамика | 1700…2300 | 1.5 | — |
Керамика теплая | — | 0.12 | — |
Кирпич доменный (огнеупорный) | 1000…2000 | 0.5…0.8 | — |
Кирпич диатомовый | 500 | 0.8 | — |
Кирпич изоляционный | — | 0.14 | — |
Кирпич карборундовый | 1000…1300 | 11…18 | 700 |
Кирпич красный плотный | 1700…2100 | 0.67 | 840…880 |
Кирпич красный пористый | 1500 | 0.44 | — |
Кирпич клинкерный | 1800…2000 | 0.8…1.6 | — |
Кирпич кремнеземный | — | 0.15 | — |
Кирпич облицовочный | 1800 | 0.93 | 880 |
Кирпич пустотелый | — | 0. 44 | — |
Кирпич силикатный | 1000…2200 | 0.5…1.3 | 750…840 |
Кирпич силикатный с тех. пустотами | — | 0.7 | — |
Кирпич силикатный щелевой | — | 0.4 | — |
Кирпич сплошной | — | 0.67 | — |
Кирпич строительный | 800…1500 | 0.23…0.3 | 800 |
Кирпич трепельный | 700…1300 | 0.27 | 710 |
Кирпич шлаковый | 1100…1400 | 0.58 | — |
Кладка бутовая из камней средней плотности | 2000 | 1.35 | 880 |
Кладка газосиликатная | 630…820 | 0.26…0.34 | 880 |
Кладка из газосиликатных теплоизоляционных плит | 540 | 0.24 | 880 |
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе | 1600 | 0.47 | 880 |
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе | 1800 | 0. 56 | 880 |
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе | 1700 | 0.52 | 880 |
Кладка из керамического пустотного кирпича на цементно-песчаном растворе | 1000…1400 | 0.35…0.47 | 880 |
Кладка из малоразмерного кирпича | 1730 | 0.8 | 880 |
Кладка из пустотелых стеновых блоков | 1220…1460 | 0.5…0.65 | 880 |
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе | 1500 | 0.64 | 880 |
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе | 1400 | 0.52 | 880 |
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе | 1800 | 0.7 | 880 |
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе | 1000…1200 | 0. 29…0.35 | 880 |
Кладка из ячеистого кирпича | 1300 | 0.5 | 880 |
Кладка из шлакового кирпича на цементно-песчаном растворе | 1500 | 0.52 | 880 |
Кладка «Поротон» | 800 | 0.31 | 900 |
Клен | 620…750 | 0.19 | — |
Кожа | 800…1000 | 0.14…0.16 | — |
Композиты технические | — | 0.3…2 | — |
Краска масляная (эмаль) | 1030…2045 | 0.18…0.4 | 650…2000 |
Кремний | 2000…2330 | 148 | 714 |
Кремнийорганический полимер КМ-9 | 1160 | 0.2 | 1150 |
Латунь | 8100…8850 | 70…120 | 400 |
Лед -60°С | 924 | 2.91 | 1700 |
Лед -20°С | 920 | 2.44 | 1950 |
Лед 0°С | 917 | 2. 21 | 2150 |
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79) | 1600…1800 | 0.33…0.38 | 1470 |
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77) | 1400…1800 | 0.23…0.35 | 1470 |
Липа, (15% влажности) | 320…650 | 0.15 | — |
Лиственница | 670 | 0.13 | — |
Листы асбестоцементные плоские (ГОСТ 18124-75) | 1600…1800 | 0.23…0.35 | 840 |
Листы вермикулитовые | — | 0.1 | — |
Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 6266 | 800 | 0.15 | 840 |
Листы пробковые легкие | 220 | 0.035 | — |
Листы пробковые тяжелые | 260 | 0.05 | — |
Магнезия в форме сегментов для изоляции труб | 220…300 | 0.073…0.084 | — |
Мастика асфальтовая | 2000 | 0. 7 | — |
Маты, холсты базальтовые | 25…80 | 0.03…0.04 | — |
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75) | 150 | 0.061 | 840 |
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82) | 50…125 | 0.048…0.056 | 840 |
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00) | 100…150 | 0.045 | — |
Мел | 1800…2800 | 0.8…2.2 | 800…880 |
Медь (ГОСТ 859-78) | 8500 | 407 | 420 |
Миканит | 2000…2200 | 0.21…0.41 | 250 |
Мипора | 16…20 | 0.041 | 1420 |
Морозин | 100…400 | 0.048…0.084 | — |
Мрамор (облицовка) | 2800 | 2.9 | 880 |
Накипь котельная (богатая известью, при 100°С) | 1000…2500 | 0. 15…2.3 | — |
Накипь котельная (богатая силикатом, при 100°С) | 300…1200 | 0.08…0.23 | — |
Настил палубный | 630 | 0.21 | 1100 |
Найлон | — | 0.53 | — |
Нейлон | 1300 | 0.17…0.24 | 1600 |
Неопрен | — | 0.21 | 1700 |
Опилки древесные | 200…400 | 0.07…0.093 | — |
Пакля | 150 | 0.05 | 2300 |
Панели стеновые из гипса DIN 1863 | 600…900 | 0.29…0.41 | — |
Парафин | 870…920 | 0.27 | — |
Паркет дубовый | 1800 | 0.42 | 1100 |
Паркет штучный | 1150 | 0.23 | 880 |
Паркет щитовой | 700 | 0.17 | 880 |
Пемза | 400…700 | 0.11…0.16 | — |
Пемзобетон | 800…1600 | 0. 19…0.52 | 840 |
Пенобетон | 300…1250 | 0.12…0.35 | 840 |
Пеногипс | 300…600 | 0.1…0.15 | — |
Пенозолобетон | 800…1200 | 0.17…0.29 | — |
Пенопласт ПС-1 | 100 | 0.037 | — |
Пенопласт ПС-4 | 70 | 0.04 | — |
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78) | 65…125 | 0.031…0.052 | 1260 |
Пенопласт резопен ФРП-1 | 65…110 | 0.041…0.043 | — |
Пенополистирол (ГОСТ 15588-70) | 40 | 0.038 | 1340 |
Пенополистирол (ТУ 6-05-11-78-78) | 100…150 | 0.041…0.05 | 1340 |
Пенополистирол Пеноплэкс | 22…47 | 0.03…0.036 | 1600 |
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75) | 40…80 | 0.029…0. 041 | 1470 |
Пенополиуретановые листы | 150 | 0.035…0.04 | — |
Пенополиэтилен | — | 0.035…0.05 | — |
Пенополиуретановые панели | — | 0.025 | — |
Пеносиликальцит | 400…1200 | 0.122…0.32 | — |
Пеностекло легкое | 100..200 | 0.045…0.07 | — |
Пеностекло или газо-стекло (ТУ 21-БССР-86-73) | 200…400 | 0.07…0.11 | 840 |
Пенофол | 44…74 | 0.037…0.039 | — |
Пергамент | — | 0.071 | — |
Пергамин (ГОСТ 2697-83) | 600 | 0.17 | 1680 |
Перекрытие армокерамическое с бетонным заполнением без штукатурки | 1100…1300 | 0.7 | 850 |
Перекрытие из железобетонных элементов со штукатуркой | 1550 | 1.2 | 860 |
Перекрытие монолитное плоское железобетонное | 2400 | 1. 55 | 840 |
Перлит | 200 | 0.05 | — |
Перлит вспученный | 100 | 0.06 | — |
Перлитобетон | 600…1200 | 0.12…0.29 | 840 |
Перлитопласт-бетон (ТУ 480-1-145-74) | 100…200 | 0.035…0.041 | 1050 |
Перлитофосфогелевые изделия (ГОСТ 21500-76) | 200…300 | 0.064…0.076 | 1050 |
Песок 0% влажности | 1500 | 0.33 | 800 |
Песок 10% влажности | — | 0.97 | — |
Песок 20% влажности | — | 1.33 | — |
Песок для строительных работ (ГОСТ 8736-77) | 1600 | 0.35 | 840 |
Песок речной мелкий | 1500 | 0.3…0.35 | 700…840 |
Песок речной мелкий (влажный) | 1650 | 1.13 | 2090 |
Песчаник обожженный | 1900…2700 | 1. 5 | — |
Пихта | 450…550 | 0.1…0.26 | 2700 |
Плита бумажная прессованая | 600 | 0.07 | — |
Плита пробковая | 80…500 | 0.043…0.055 | 1850 |
Плита огнеупорная теплоизоляционная Avantex марки Board | 200…500 | 0.04 | — |
Плитка облицовочная, кафельная | 2000 | 1.05 | — |
Плитка термоизоляционная ПМТБ-2 | — | 0.04 | — |
Плиты алебастровые | — | 0.47 | 750 |
Плиты из гипса ГОСТ 6428 | 1000…1200 | 0.23…0.35 | 840 |
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77) | 200…1000 | 0.06…0.15 | 2300 |
Плиты из керзмзито-бетона | 400…600 | 0.23 | — |
Плиты из полистирол-бетона ГОСТ Р 51263-99 | 200…300 | 0. 082 | — |
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75) | 40…100 | 0.038…0.047 | 1680 |
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78) | 50 | 0.056 | 840 |
Плиты из ячеистого бетона ГОСТ 5742-76 | 350…400 | 0.093…0.104 | — |
Плиты камышитовые | 200…300 | 0.06…0.07 | 2300 |
Плиты кремнезистые | 0.07 | — | |
Плиты льнокостричные изоляционные | 250 | 0.054 | 2300 |
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80 | 150…200 | 0.058 | — |
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-96 | 225 | 0.054 | — |
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия) | 170…230 | 0.042…0.044 | — |
Плиты минераловатные повышенной жесткости ГОСТ 22950-95 | 200 | 0.052 | 840 |
Плиты минераловатные повышенной жесткости на органофосфатном связующем (ТУ 21-РСФСР-3-72-76) | 200 | 0.064 | 840 |
Плиты минераловатные полужесткие на крахмальном связующем | 125…200 | 0.056…0.07 | 840 |
Плиты минераловатные на синтетическом и битумном связующих | — | 0.048…0.091 | — |
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66) | 50…350 | 0.048…0.091 | 840 |
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-87 | 80…100 | 0.045 | — |
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые | 30…35 | 0.038 | — |
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00 | 32 | 0.029 | — |
Плиты перлито-битумные ГОСТ 16136-80 | 300 | 0.087 | — |
Плиты перлито-волокнистые | 150 | 0.05 | — |
Плиты перлито-фосфогелевые ГОСТ 21500-76 | 250 | 0.076 | — |
Плиты перлито-1 Пластбетонные ТУ 480-1-145-74 | 150 | 0.044 | — |
Плиты перлитоцементные | — | 0.08 | — |
Плиты строительный из пористого бетона | 500…800 | 0.22…0.29 | — |
Плиты термобитумные теплоизоляционные | 200…300 | 0.065…0.075 | — |
Плиты торфяные теплоизоляционные (ГОСТ 4861-74) | 200…300 | 0.052…0.064 | 2300 |
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе | 300…800 | 0.07…0.16 | 2300 |
Покрытие ковровое | 630 | 0.2 | 1100 |
Покрытие синтетическое (ПВХ) | 1500 | 0.23 | — |
Пол гипсовый бесшовный | 750 | 0.22 | 800 |
Поливинилхлорид (ПВХ) | 1400…1600 | 0.15…0.2 | — |
Поликарбонат (дифлон) | 1200 | 0.16 | 1100 |
Полипропилен (ГОСТ 26996– 86) | 900…910 | 0.16…0.22 | 1930 |
Полистирол УПП1, ППС | 1025 | 0.09…0.14 | 900 |
Полистиролбетон (ГОСТ 51263) | 150…600 | 0.052…0.145 | 1060 |
Полистиролбетон модифицированный на активированном пластифицированном шлакопортландцементе | 200…500 | 0.057…0.113 | 1060 |
Полистиролбетон модифицированный на композиционном малоклинкерном вяжущем в стеновых блоках и плитах | 200…500 | 0.052…0.105 | 1060 |
Полистиролбетон модифицированный монолитный на портландцементе | 250…300 | 0.075…0.085 | 1060 |
Полистиролбетон модифицированный на шлакопортландцементе в стеновых блоках и плитах | 200…500 | 0.062…0.121 | 1060 |
Полиуретан | 1200 | 0.32 | — |
Полихлорвинил | 1290…1650 | 0.15 | 1130…1200 |
Полиэтилен высокой плотности | 955 | 0.35…0.48 | 1900…2300 |
Полиэтилен низкой плотности | 920 | 0.25…0.34 | 1700 |
Поролон | 34 | 0.04 | — |
Портландцемент (раствор) | — | 0.47 | — |
Прессшпан | — | 0.26…0.22 | — |
Пробка гранулированная техническая | 45 | 0.038 | 1800 |
Пробка минеральная на битумной основе | 270…350 | 0.073…0.096 | — |
Пробковое покрытие для полов | 540 | 0.078 | — |
Ракушечник | 1000…1800 | 0.27…0.63 | 835 |
Раствор гипсовый затирочный | 1200 | 0.5 | 900 |
Раствор гипсоперлитовый | 600 | 0.14 | 840 |
Раствор гипсоперлитовый поризованный | 400…500 | 0.09…0.12 | 840 |
Раствор известковый | 1650 | 0.85 | 920 |
Раствор известково-песчаный | 1400…1600 | 0.78 | 840 |
Раствор легкий LM21, LM36 | 700…1000 | 0.21…0.36 | — |
Раствор сложный (песок, известь, цемент) | 1700 | 0.52 | 840 |
Раствор цементный, цементная стяжка | 2000 | 1.4 | — |
Раствор цементно-песчаный | 1800…2000 | 0.6…1.2 | 840 |
Раствор цементно-перлитовый | 800…1000 | 0.16…0.21 | 840 |
Раствор цементно-шлаковый | 1200…1400 | 0.35…0.41 | 840 |
Резина мягкая | — | 0.13…0.16 | 1380 |
Резина твердая обыкновенная | 900…1200 | 0.16…0.23 | 1350…1400 |
Резина пористая | 160…580 | 0.05…0.17 | 2050 |
Рубероид (ГОСТ 10923-82) | 600 | 0.17 | 1680 |
Руда железная | — | 2.9 | — |
Сажа ламповая | 170 | 0.07…0.12 | — |
Сера ромбическая | 2085 | 0.28 | 762 |
Серебро | 10500 | 429 | 235 |
Сланец глинистый вспученный | 400 | 0.16 | — |
Сланец | 2600…3300 | 0.7…4.8 | — |
Слюда вспученная | 100 | 0.07 | — |
Слюда поперек слоев | 2600…3200 | 0.46…0.58 | 880 |
Слюда вдоль слоев | 2700…3200 | 3.4 | 880 |
Смола эпоксидная | 1260…1390 | 0.13…0.2 | 1100 |
Снег свежевыпавший | 120…200 | 0.1…0.15 | 2090 |
Снег лежалый при 0°С | 400…560 | 0.5 | 2100 |
Сосна и ель вдоль волокон | 500 | 0.18 | 2300 |
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72) | 500 | 0.09 | 2300 |
Сосна смолистая 15% влажности | 600…750 | 0.15…0.23 | 2700 |
Сталь стержневая арматурная (ГОСТ 10884-81) | 7850 | 58 | 482 |
Стекло оконное (ГОСТ 111-78) | 2500 | 0.76 | 840 |
Стекловата | 155…200 | 0.03 | 800 |
Стекловолокно | 1700…2000 | 0.04 | 840 |
Стеклопластик | 1800 | 0.23 | 800 |
Стеклотекстолит | 1600…1900 | 0.3…0.37 | — |
Стружка деревянная прессованая | 800 | 0.12…0.15 | 1080 |
Стяжка ангидритовая | 2100 | 1.2 | — |
Стяжка из литого асфальта | 2300 | 0.9 | — |
Текстолит | 1300…1400 | 0.23…0.34 | 1470…1510 |
Термозит | 300…500 | 0.085…0.13 | — |
Тефлон | 2120 | 0.26 | — |
Ткань льняная | — | 0.088 | — |
Толь (ГОСТ 10999-76) | 600 | 0.17 | 1680 |
Тополь | 350…500 | 0.17 | — |
Торфоплиты | 275…350 | 0.1…0.12 | 2100 |
Туф (облицовка) | 1000…2000 | 0.21…0.76 | 750…880 |
Туфобетон | 1200…1800 | 0.29…0.64 | 840 |
Уголь древесный кусковой (при 80°С) | 190 | 0.074 | — |
Уголь каменный газовый | 1420 | 3.6 | — |
Уголь каменный обыкновенный | 1200…1350 | 0.24…0.27 | — |
Фарфор | 2300…2500 | 0.25…1.6 | 750…950 |
Фанера клееная (ГОСТ 3916-69) | 600 | 0.12…0.18 | 2300…2500 |
Фибра красная | 1290 | 0.46 | — |
Фибролит (серый) | 1100 | 0.22 | 1670 |
Целлофан | — | 0.1 | — |
Целлулоид | 1400 | 0.21 | — |
Цементные плиты | — | 1.92 | — |
Черепица бетонная | 2100 | 1.1 | — |
Черепица глиняная | 1900 | 0.85 | — |
Черепица из ПВХ асбеста | 2000 | 0.85 | — |
Чугун | 7220 | 40…60 | 500 |
Шевелин | 140…190 | 0.056…0.07 | — |
Шелк | 100 | 0.038…0.05 | — |
Шлак гранулированный | 500 | 0.15 | 750 |
Шлак доменный гранулированный | 600…800 | 0.13…0.17 | — |
Шлак котельный | 1000 | 0.29 | 700…750 |
Шлакобетон | 1120…1500 | 0.6…0.7 | 800 |
Шлакопемзобетон (термозитобетон) | 1000…1800 | 0.23…0.52 | 840 |
Шлакопемзопено- и шлакопемзогазобетон | 800…1600 | 0.17…0.47 | 840 |
Штукатурка гипсовая | 800 | 0.3 | 840 |
Штукатурка известковая | 1600 | 0.7 | 950 |
Штукатурка из синтетической смолы | 1100 | 0.7 | — |
Штукатурка известковая с каменной пылью | 1700 | 0.87 | 920 |
Штукатурка из полистирольного раствора | 300 | 0.1 | 1200 |
Штукатурка перлитовая | 350…800 | 0.13…0.9 | 1130 |
Штукатурка сухая | — | 0.21 | — |
Штукатурка утепляющая | 500 | 0.2 | — |
Штукатурка фасадная с полимерными добавками | 1800 | 1 | 880 |
Штукатурка цементная | — | 0.9 | — |
Штукатурка цементно-песчаная | 1800 | 1.2 | — |
Шунгизитобетон | 1000…1400 | 0.27…0.49 | 840 |
Щебень и песок из перлита вспученного (ГОСТ 10832-83) — засыпка | 200…600 | 0.064…0.11 | 840 |
Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75) и аглопорита (ГОСТ 11991-83) — засыпка | 400…800 | 0.12…0.18 | 840 |
Эбонит | 1200 | 0.16…0.17 | 1430 |
Эбонит вспученный | 640 | 0.032 | — |
Эковата | 35…60 | 0.032…0.041 | 2300 |
Энсонит (прессованный картон) | 400…500 | 0.1…0.11 | — |
Эмаль (кремнийорганическая) | — | 0.16…0.27 | — |
Волокна растительного и живого происхождения, химические волокна
Волокна растительного происхождения. К волокнам растительного происхождения относят хлопковые и лубяные.
Хлопок — это волокна, покрывающие семена растения хлопчатника. Основным веществом (94-96 %), из которого состоит хлопковое волокно, является целлюлоза. К сопутствующим веществам (4—6 %) относятся вода, пектиновые (склеивающие), жировосковые, зольные вещества и др.
Хлопковое волокно нормальной зрелости под микроскопом имеет вид плоской ленточки со штопорообразной извитостью и с каналом, заполненным внутри воздухом.
Хлопковое волокно обладает многими положительными свойствами. Прежде всего, оно имеет высокую гигроскопичность (8~12%), поэтому хлопчатобумажные ткани и изделия из них обладают хорошими гигиеническими свойствами.
Хлопок обладает способностью быстро впитывать влагу и быстро ее испарять, т. е. быстро высыхает. При погружении в воду волокна набухают, и их прочность увеличивается на 10-20 %. Хлопок устойчив к действию щелочей, но разрушается даже разбавленными кислотами.
На способность хлопка набухать в щелочах и повышать при этом прочность, окрашиваемость и приобретать шелковистость и блеск основано проведение специальной операции отделки — мерсеризации. Волокна достаточно прочные. Хлопок имеет сравнительно высокую термостойкость — разрушения волокна при температуре до 130 °С не происходит. Хлопковое волокно более стойкое, чем вискозное и натуральный шелк, к действию света, но по светостойкости уступает лубяным и шерстяным волокнам. Волокна хлопка горят желтым пламенем, образуя серый пепел, ощущается запах жженой бумаги. Отрицательными свойствами хлопкового волокна являются высокая сминаемость (из-за малой упругости), большая усадка, низкая стойкость к действию кислот.
Лен. Волокна, которые получают из стеблей, листьев или оболочек плодов растений, называются лубяными. Из стеблей конопли вырабатывают прочные грубые волокна — пеньку, которая используется для тарных тканей и веревочно-канатных изделий. Грубые технические волокна (джут, кенаф, рами) получают из стеблей одноименных растений. Из всех лубяных волокон наибольшее применение получило льняное.
Льняные волокна получают из лубяной части стебля. Лен — однолетнее травянистое растение.
Характерной особенностью лубяных волокон в отличие от других является то, что они представляют собой пучки волокон, соединенных пектиновыми веществами. При длительном кипячении в мыльно-содовых растворах пектиновые вещества вымываются и лен делится на отдельные волокна.
Отдельное волокно льна представляет собой одну растительную клетку. Под микроскопом волокно в продольном виде представляет собой цилиндр с толстыми стенками. Поперечный срез волокна — многоугольник с 5-6 гранями.
Поверхность волокна более ровная и гладкая, в результате чего льняные ткани меньше, чем хлопчатобумажные, загрязняются и легче отстирываются. Эти свойства льна особенно ценны для бельевых полотен.
В составе волокна 80% целлюлозы и 20% примесей — воскообразных, жировых, красящих, минеральных и лигнина (5%). Лигнин -продукт одревеснения клетки, придающий льну повышенную жесткость. Содержание лигнина в льняном волокне делает его устойчивым к действию света, погоды, микроорганизмов.
Прочность элементарных волокон в 3-5 раз превышает прочность хлопка, а растяжимость — во столько же раз меньше, поэтому льняные прокладочные ткани лучше сохраняют форму изделий, чем хлопчатобумажные. Волокна блестят, так как имеют гладкую поверхность, Физико-химические свойства льна и хлопка достаточно близки. Льняное волокно уникально тем, что при высокой гигроскопичности (12%), оно быстрее других текстильных волокон поглощает и выделяет влагу. Особенностью льна является его высокая теплопроводность, поэтому на ощупь волокна всегда прохладные. Термического разрушения волокна не происходит до температуры 160 °С. Химические свойства льняного волокна аналогичны хлопковому, т. е. оно устойчиво к действию щелочей, но не устойчиво к кислотам. В связи с тем, что льняные ткани имеют свой естественный красивый достаточно шелковистый блеск, мерсеризации их не подвергают. Отрицательным свойством льняного волокна является его сильная сминаемость из-за низкой упругости. Волокна льна отбеливаются и окрашиваются, так как имеют более интенсивную природную окраску, толстые стенки.
Волокна животного происхождения. К волокнам животного происхождения относят шерсть и натуральный шелк.
Шерсть — это волокна снятого волосяного покрова овец коз, верблюдов, кроликов и других животных. Шерсть получают в основном с овец (97-98%), в меньшем количестве с коз (до 2%), верблюдов (до 1 %). Шерстяные волокна состоят из белка кератина.
Шерстяные волокна под микроскопом легко можно отличить от других волокон — их наружная поверхность покрыта чешуйками. Под микроскопом видна своеобразная извитость шерстяных волокон. Их извитки волнообразны в отличие от хлопковых волокон, извитки которых штопорообразные. Сильную извитость имеет тонкая шерсть.
Шерсть может быть следующих видов: пух, переходный волос, ость и мертвый волос. Пух — тонкое, сильно извитое, шелковистое волокно; переходный волос неравномерен по толщине, прочности, имеет меньшую извитость; ость и мертвый волос характеризуются большей толщиной, отсутствием извитости, повышенной жесткостью и хрупкостью, малой прочностью, мертвый волос плохо окрашивается, легко ломается и выпадает из готовых изделий.
Шерсть может быть однородной (из волокон преимущественно одного вида, например, пуха) и неоднородной (из волокон разных видов — пуха, переходного волоса и др.). В зависимости от толщины волокон и однородности их состава шерсть подразделяют на тонкую, полутонкую, полугрубую и грубую. Тонкая шерсть состоит из тонких волокон пуха, полутонкая состоит из более толстого пуха или переходного волоса; полугрубая может быть однородной и неоднородной и состоять из пуха, переходного волоса и небольшого количества ости; грубая — неоднородная и включает в себя все виды волокон, в том числе ость и мертвый волос.
Шерстяное волокно имеет высокую упругость, а следовательно, малую сминаемость. Шерсть — достаточно прочное волокно, удлинение при разрыве высокое. В мокром состоянии волокна на 30 % теряют прочность.
Блеск шерсти определяется формой и размером покрывающих ее чешуек: крупные плоские чешуйки придают шерсти максимальный блеск; мелкие, сильно отстающие чешуйки делают ее матовой.
Свойства шерсти уникальны — ей присуща высокая свойлачиваемость, что объясняется наличием на поверхности волокна чешуйчатого слоя. Это свойство учитывается при отделке (валке) суконных тканей, фетра, войлока, одеял, при производстве валяной обуви.
Шерсть обладает низкой теплопроводностью, поэтому ткани отличаются высокими теплозащитными свойствами.
По гигроскопичности шерсть превосходит все волокна. Она медленно впитывает и испаряет влагу и поэтому не охлаждается, оставаясь на ощупь сухой. На способности шерсти менять свою растяжимость и усадку при влажно-тепловой обработке основано проведение ряда операций: сутюживание, оттягивание и декатировка. При высыхании шерсть дает максимальную усадку, поэтому изделия из нее рекомендуется подвергать химической чистке.
К действию света шерстяное волокно более устойчиво, чем хлопковое и льняное. Но при длительном облучении оно разрушается.
Щелочи на шерсть действуют разрушающе, к кислотам она устойчива. Поэтому если шерстяные волокна, содержащие растительные примеси, обработать раствором кислоты, то эти примеси, состоящие из целлюлозы, растворятся, и шерстяные волокна останутся в чистом виде. Такой процесс очистки шерсти называют карбонизацией,
В пламени волокна шерсти спекаются, но при вынесении из пламени не горят, образуя на конце волокон спекшийся черный шарик, который легко растирается, при этом ощущается запах жженого пера. Недостатком шерсти является малая термостойкость — при температуре 100—110 С волокна становятся ломкими и жесткими, снижается их прочность.
Натуральный шелк по своим свойствам и себестоимости — ценнейшее текстильное сырье. Получают его разматыванием коконов, образуемых гусеницами шелкопрядов. Наибольшее распространение и ценность имеет шелк тутового шелкопряда, на долю которого приходится 90% мирового производства шелка.
При рассмотрении коконной нити под микроскопом четко видны две шелковины, неравномерно склеенные серицином. В составе коконной нити два белка: фиброин (75 %), из которого состоят шелковины, и серицин (25 %).
Из всех природных волокон натуральный шелк самое легкое волокно и наряду с красивым внешним видом обладает высокой гигроскопичностью (11%), мягкостью, шелковистостью, малой сминаемостью, является незаменимым сырьем для изготовления летней одежды (платьев, блузок).
Натуральный шелк обладает высокой прочностью. Разрывная нагрузка шелка в мокром состоянии снижается примерно на 15%.
Химические свойства натурального шелка аналогичны шерсти, т. е. к кислотам устойчив, к щелочи — нет.
Натуральный шелк имеет самую низкую светостойкость, поэтому в домашних условиях изделия на свету не сушат, особенно при солнечном свете. К другим недостаткам натурального шелка относят низкую термостойкость (такая же, как у шерсти) и высокую усадку, особенно у крученых нитей.
Химические волокна. Химические волокна получают путем химической переработки природных (целлюлозы, белков и др.) или синтетических высокомолекулярных веществ (полиамидов, полиэфиров и др.).
Основным исходным сырьем для получения химических волокон служат древесина, отходы хлопка, стекло, металлы, нефть, газы и каменный уголь.
Волокна формуют из расплавов или растворов высокомолекулярных соединений. Расплав или прядильный раствор высокомолекулярного вещества (полимера) фильтруется и продавливается через тончайшие отверстия в фильерах. Фильеры представляют собой рабочие органы прядильных машин, осуществляющие процесс формования волокон. Струйки прядильных растворов или расплавов, вытекающие из фильеры, затвердевая, образуют нити. Используя фильеры с отверстиями сложной конфигурации, можно получить профилированные и полые волокна.
1. Искусственные волокна. К искусственным относят волокна, получаемые переработкой природных высокомолекулярных соединений — целлюлозы, белков. Более 99 % этих волокон вырабатывают из целлюлозы.
Вискозное волокно — одно из первых химических волокон, вырабатываемых в промышленных масштабах. Для его изготовления используют обычно древесную, преимущественно еловую, целлюлозу, которую путем обработки химическими реагентами превращают в прядильный раствор — вискозу.
Вискозные волокна отличаются высокой гигроскопичностью (11 — 12%), поэтому изделия из них хорошо впитывают влагу и являются гигиеничными; в воде волокна сильно набухают, при этом площадь поперечного сечения увеличивается в 2 раза. Они достаточно устойчивы к истиранию, поэтому их целесообразно использовать для выработки изделий, для которых важными характеристиками являются высокие износостойкость и гигиенические свойства (например, для подкладочных и сорочечных тканей).
Вискозное волокно имеет высокую термостойкость, средние прочность и удлинение, по отношению к кислотам и щелочам — аналогично хлопку и льну.
Однако вискозное волокно имеет ряд существенных недостатков, проявляющихся в изделиях из него, — это сильная сминаемость из-за низкой упругости и высокая усадка (6-8%). Другим недостатком вискозного волокна является большая потеря прочности в мокром состоянии (50-60%). Для снижения недостатков вискозное волокно физически или химически модифицируют, получая полинозные волокна, мтилон, сиблон и др. Полинозное волокно напоминает тонковолокнистый хлопок и применяется при производстве сорочечных, бельевых и др. тканей. Мтилон — шерстоподобное вискозное волокно, которое применяется для ворса ковров. Сиблон — заменитель средне волокнистого хлопка.
Ацетатные волокна получают из хлопкового пуха или облагороженной древесной целлюлозы.
При воздействии на целлюлозу уксусным ангидридом, уксусной и серной кислотами образуется ацетил целлюлоза, из раствора которой получают ацетатные волокна или нити. В зависимости от применяемых растворителей и других химических реагентов получают диацетатные, называемые ацетатными, и триацетатные волокна.
Некоторые из свойств ацетатных и триацетатных волокон являются общими, а некоторые имеют свои особенности. Так, к общим положительным свойствам относят малую сминаемость и усадку (до 1,5 %), а также способность сохранять в изделиях эффекты гофре, плиссе даже после мокрых обработок; к недостаткам, сдерживающим их применение в ассортименте изделий, — низкую устойчивость к истиранию, в результате чего нецелесообразно их применение в ассортименте подкладочных, сорочечных, костюмных тканей. Лучше эти волокна использовать в ассортименте галстучных тканей, для которых износостойкость большого значения не имеет. К другим общим недостаткам волокон относят высокую электризуемость и склонность изделий к образованию заломов в мокром состоянии.
Различия в свойствах ацетатного и триацетатного волокон состоят в следующем. Гигроскопичность у ацетатного волокна выше (6,2 %), чем у триацетатных (4,5%), однако последние лучше окрашиваются и имеют, большую свето- и термостойкость (180 X против 140-150*С).
Из других искусственных волокон в производстве тканей используют алюнит (люрекс), пластилекс, метанит.
2. Синтетические волокна. Синтетические волокна получают из природных низкомолекулярных веществ (мономеров), которые путем химического синтеза превращаются в высокомолекулярные (полимеры).
Синтетические волокна по сравнению с искусственными обладают высокой износостойкостью, малыми сминаемостью и усадкой, но их гигиенические свойства невысокие.
Полиамидные волокна (капрон). Волокно капрон, применяющееся наиболее широко, получают из продуктов переработки каменного угля.
К положительным свойствам капронового волокна относят высокую прочность, а также самую большую из текстильных волокон устойчивость к истиранию по изгибам. Эти ценные свойства капронового волокна используют при введении его в смеску с другими волокнами для получения износостойких материалов, введение 5-10% капронового волокна в шерстяную ткань в 1,5-2 раза повышает ее стойкость к истиранию. Капроновое волокно также обладает малой сминаемостью и усадкой, устойчивостью к действию микроорганизмов.
При внесении в пламя капрон плавится, загорается с трудом горит голубоватым пламенем. Если расплавленная масса начинает капать, горение прекращается, на конце образуется оплавленный бурый шарик, ощущается запах сургуча.
Однако капроновое волокно мало гигроскопично (3,5-4%), поэтому гигиенические свойства изделий из таких волокон невысокие. Кроме этого, капроновое волокно жесткое, сильно электризуется, неустойчиво к действию света, щелочей, минеральных кислот, имеет низкую термостойкость. На поверхности изделий выработанных из капроновых волокон, образуются пилли, которые из-за высокой прочности волокон сохраняются в изделии и в процессе носки не исчезают.
Полиэфирные волокна, полиэтилентерефшалат ПЭТФ (лавсан или полиэстер). Исходным сырьем для получения лавсана служат продукты переработки нефти.
В общемировом производстве синтетических волокон эти волокна выходят на первое место. Лавсановое волокно характеризуется отличной несминаемостью, превосходящей все текстильные волокна, в том числе и шерсть. Так изделия из лавсановых волокон в 2-3 раза меньше сминаются, чем шерстяные. Чтобы изделия с целлюлозными волокнами стали малосминаемыми, в смеску к этим волокнам добавляют 45-55 % лавсановых волокон.
Лавсановое волокно обладает очень хорошей стойкостью к свету и атмосферным воздействиям (уступает только нитроновому волокну). По этой причине его целесообразно использовать в гардинно-тюлевых, тентовых, палаточных изделиях. Лавсановое волокно — одни из термостойких волокон. Оно термопластично благодаря, чему изделия хорошо сохраняют эффекты плиссе и гофре. По стойкости к истиранию и изгибам лавсановое волокно несколько уступает капроновому. Но прочность на разрыв и удлинение при разрыве высокие. Волокно стойко к разбавленным кислотам, шелочам, но разрушается при воздействии концентрированной серной кислотой и горячей щелочью. Горит лавсан желтым коптящим пламенем, образуя на конце черный нерастирающийся шарик.
Однако лавсановое волокно обладает низкой гигроскопичностью (до 1 %), плохой окрашиваемостью, повышенной жесткостью, электризуемостью и пиллингуемостью. Причем пилли длительно сохраняются на поверхности изделий.
Полиакрилонитрильные (ПАН) волокна (акрил или нитрон). Исходным сырьем для изготовления нитрона служат продукты переработки каменного угля, нефти, газа.
Нитрон — наиболее мягкое, шелковистое и теплое синтетическое волокно. По теплозащитным свойствам превосходит шерсть, но по стойкости к истиранию уступает даже хлопку. Прочность нитрона вдвое ниже прочности капрона, гигроскопичность низкая (1,5%). Нитрон отличается кислостойкостью, устойчив к действию всех органических растворителей, но разрушается щелочами.
Обладает малой сминаемостью и усадкой. По светостойкости превосходит все текстильные волокна. Горит нитрон желтым коптящим пламенем со вспышками, образуя на конце твердый шарик.
Волокно хрупкое, плохо окрашивается, сильно электризуется и пиллингуется, но пилли из-за невысоких прочностных свойств в процессе носки исчезают.
Поливинилхлоридные волокна вырабатывают из поливинилхлорида — волокно ПВХ и из перхлорвинила — хлорин. Волокна отличаются высокой химической стойкостью, малой теплопроводностью, очень низкой гигроскопичностью (0,1-0,15%), способностью накапливать при трении о кожу человека электростатические заряды, имеющие лечебный эффект при болезнях суставов. Недостатками являются низкая теплостойкость и неустойчивость к действию света.
Поливинилспиртовые волокна (винол) получают из поливинилацетата. Винол имеет самую высокую гигроскопичность (5%), обладает высокой устойчивостью к истиранию, уступая только полиамидным волокнам, хорошо окрашивается.
Полиолефиновые волокна получают из расплавов полиэтилена и полипропилена. Это самые легкие текстильные волокна, изделия из них в воде не тонут. Они устойчивы к истиранию, действию химических реагентов, отличаются высокой прочностью на разрыв. Недостатками являются малая светостойкость и низкая теплостойкость.
Полиуретановые волокна (спандекс ими лайкра) относятся к эластомерам, так как обладают исключительно высокой эластичностью (растяжимость до 800%). Обладают легкостью, мягкостью, устойчивостью к действию света, стирке, поту. К недостаткам относятся: низкая гигроскопичность (1 — 1,5%), невысокая прочность, низкая теплостойкость.
Гагачий пух – золотое руно северных морей — Владимир Дудин
Кто в России не слышал про гагачий пух? Да, у нас знают и любят гагачий пух, но, спросив о том, какого он цвета, будьте уверены, что многие, не задумываясь, ответят – гагачий пух белый. Если продолжить задавать вопросы, ответов на них вы можете не услышать. Как выяснилось и в средствах массовой информации много неточностей и заведомо искажённых фактов. К счастью, в нашей стране есть люди, которые смогут ответить на все интересующие нас вопросы. Обратимся в Лабораторию по переработке гагачьего пуха. На вопросы Антона Круглова отвечает владелец лаборатории Владимир Дудин.
Итак, Владимир, что такое гагачий пух и в чём его уникальность?
Гагачий пух – это уникальный теплоизоляционный материал природного происхождения. Собирают его из гнёзд гаги.
Немного о самой гаге.
Гага обыкновенная (Somateria Mollissima) – арктическая нырковая утка, вес которой достигает 3,5 кг. Ареал обитания – побережье северных морей от Канады до России. Основная пища: мидии, ракообразные и рыба. Добывая пищу, гага ныряет на глубину до 10 м. Как и все настоящие морские птицы, она связана с твёрдой землёй лишь в период гнездования. Всё остальное время проводит в открытом море. Ей не страшны ни сильный прибой, ни шторм, ни лютый мороз. Данный вид широко известен своим знаменитым гагачьим пухом. Вместе с густым оперением и слоем подкожного жира этот пышный высокий пух, особенно густо одевающий брюшко, является одним из приспособлений птицы к жизни на ледяной воде северных морей, на холодных скалах, на снегу, на мерзлой почве арктических побережий. Пух обладает исключительной легкостью и малой теплопроводностью. Самцы имеют черно-белое оперение и в народе называются «гагунами». Оперение самки окрашено в тёмно-коричневый цвет с оттенками черного и серого цветов. Это оперение идеально при маскировке на гнезде и позволяет самке часто оставаться незамеченной.
Вы упомянули о том, что гагачий пух собирают с гнёзд. Когда и как это делают?
Как только брачный период окончен, самки приступают к кладке. Каждая самка выбирает себе подходящее место и выдавливает в почве лунку, в которую откладывает от трёх до семи яиц. Гагачий пух, который служил ей защитой в лютую стужу, теперь препятствует процессу насиживания, поэтому самки выщипывают самый нежный и лучший пух у себя с брюшка и освобождают насидное место (для каждого яйца есть свой насидный мозоль). Выщипанным пухом самка выстилает гнездо. В этот период самцы держаться поблизости, но как только процесс кладки окончен и начался период насиживания, самцы собираются в стаи и откочёвывают к местам ежегодной линьки. Вся забота о потомстве ложится на самок. К этому моменту люди готовятся к началу сбора.
Я слышал, что процесс сбора и переработки гагачьего пуха в Исландии – это целая индустрия. Не могли бы вы рассказать об этом подробнее.
Когда-то для меня гагачий пух был чем-то неведомым, как для греков золотое руно. Только в отличие от Ясона с аргонавтами я отправился не в Колхиду, а в Исландию. Изучив подробно все факты, которые историки и литературоведы отыскали, пользуясь древним текстом, мне удалось провести параллель со своим первым путешествием в Исландию.
Вы, наверное, знаете, что золотое руно – это символ, означающий ни что иное как технологию добычи золота с помощью овечьих шкур. В древней Колхиде в горных ручьях, которые, на своём пути размывая золотоносные жилы, несли золотой песок вниз по течению, предки современных грузин расстилали под горные струи овечьи шкуры. В шерсти золотой песок задерживался, шкуру сушили и выбивали из неё золото.
Чистый гагачий пух – это золотое руно северных морей. Как и в случае с Древней Колхидой – это технология, без которой гагачий пух ничего не стоит.
Современная технология переработки гагачьего пуха была создана в 70-е годы ХХ века в Исландии. К концу прошлого века требования к качеству гагачьего пуха возросли, и необходимо было срочно усовершенствовать процесс переработки. В 90-е годы прошлого века, благодаря усилиям исландских промышленников и российских инженеров, была создана современная линия по переработке гагачьего пуха, позволяющая получить продукт высочайшего качества. Такое оборудование существует только в двух экземплярах. Одна установка работает в Исландии, другая в России. Из 2,5 тонн собираемого в Исландии гагачьего пуха только 400 кг перерабатывается на вышеупомянутой линии.
Насколько я знаю, гага гнездится по всему побережью Северного Ледовитого океана. В чем же секрет успеха маленькой Исландии?
Секрет прост – это традиция. В Исландии собирают и перерабатывают гагачий пух уже 800 лет, а продают его 300 лет. Существуют исторические факты: датские купцы продавали в России ежегодно до 3 тонн гагачьего пуха вплоть до Октябрьской революции. В те времена Исландия была датской колонией, и исландцы под страхом смерти должны были торговать только с датчанами.
Благодаря заботе человека численность гаги в Исландии не снижается и сегодня. Это единственная страна в мире, где есть законы, регулирующие сбор, переработку и экспорт гагачьего пуха. Местный Закон разрешает сбор гагачьего пуха в период гнездования. В то же самое время природоохранные законы в Финляндии запрещают высаживаться на острова, где гнездится морская птица в период гнездования. Как следствие собранный в Финляндии гагачий пух не имеет коммерческой стоимости.
Так как же собирают гагачий пух в Исландии?
В Исландии земля принадлежит частным лицам, в том числе и острова, находящиеся вблизи береговой линии. Такие острова наиболее привлекательны для гнездования. Птица гнездится из года в год в одном и том же месте, порой даже занимая под гнездо одну и ту же лунку.
Процесс сбора начинается одновременно с началом периода насиживания. Инкубационный период продолжается 21 день, в это время фермеры посещают свои острова и собирают гагачий пух. Во время сбора люди заменяют пух сухим сеном, – этот метод опробован столетиями и не причиняет вреда ни птице, ни её потомству. Степень доверия гаги настолько велика, что порой самку с гнезда можно снять руками.
Сбор пуха – самый первый и наиболее важный этап в технологической цепи. От скорости сбора и доставки гагачьего пуха-сырца на пункт переработки полностью зависит качество гагачьего пуха. Процесс переработки гагачьего пуха я бы сравнил с процессом переработки и упаковки чёрной икры. Как говорится, «Икра, упакованная в декабре – не икра». Так же как икра, высококачественный гагачий пух обрабатывается до конца сентября! Всё, что обработано позже, имеет среднее и низкое качество.
Вы говорили, что в Исландии ежегодно перерабатывают и экспортируют 2.5 тонны чистого гагачьего пуха. Какая же часть имеет наивысшее качество стандарта ТОР quality?
Я думаю, 800 килограммов. Весь этот объём Исландия экспортирует в Японию. Мне пришло в голову ещё одно сравнение. Я бы хотел сравнить гагачий пух с вином. Этот лот, 800 кг, я бы назвал Chateau Lafite, из этого объёма можно сделать, к примеру, всего 700 одеял.
Я думаю, для вас не является секретом тот факт, что первая экспедиция советских альпинистов на Эверест была экипирована изделиями на гагачьем пуху?
Люди, занимавшиеся подготовкой первой российской экспедиции на Эверест, решили использовать в одежде и спальных мешках пух гаги. Их можно понять, ведь гагачий пух – лучший природный материал, обладающий уникальными теплоизоляционными свойствами в сочетании с невероятной легкостью. Я видел пух, из которого были сделаны пуховки для наших альпинистов, и могу сказать, что качество пуха оставляло желать лучшего. Это кустарная обработка и видны все мыслимые и немыслимые нарушения при сборе. У этого пуха не было никакой сцепляемости, а внешний вид говорил о том, что пух не был промыт и быстро испортился.
Значит всё то, что обычно называют гагачьим пухом, в действительности им не является?
Совершенно верно. Так же как не всё золото, что блестит. Нет никакого смысла заниматься сбором гагачьего пуха, если нет современной технологии по переработке гагачьего пуха. Я бы хотел уточнить, что между гагачьим пухом в гнезде, и гагачьим пухом в изделии существует огромная разница. Хотя и то, и другое – гагачий пух.
Давайте попробуем классифицировать:
Гагачий пух, собранный с гнезда. (Eiderdown raw material)
Ничего не стоит без возможности его обработать
Гагачий пух, собранный и обработанный в Финляндии и Канаде. (Low quality eiderdown)
В этих странах отсутствует оборудование для переработки гагачьего пуха. Технология сбора не позволят получить сырьё высокого качества. Такому пуху грош цена. Поэтому этот пух не попадает на международный рынок.
Гагачий пух, собранный и обработанный в Исландии по современной технологии. (Iceland dry processed eiderdown)
Первое – это пух, прошедший дезинфекцию. Второе – из этого пуха удалены все органические примеси. Третье – это 100% гагачий пух, т.е. пух, прошедший ручной контроль, в результате которого полностью удалено перо. Продаётся большими лотами оптовым покупателям из Японии и Европы. Но пух ещё не промыт!
Гагачий пух, промытый и высушенный с использованием технологических линий для промышленной переработки гусиного пуха. Так называемый Европейский стандарт. (Eropean washed eiderdown)
Европейцы закупают гагачий пух под заказ, как правило, зимой. В этом случае они покупают пух среднего и плохого качества. Такой пух можно использовать в готовых изделиях, но он уступает Японскому стандарту.
Японский стандарт. (Japanese washed eiderdown)
Базируется на закупке только пуха высокого качества. Такой пух поступает на Японские фабрики осенью. Затем японцы моют и сушат гагачий пух, используя немецкую технологию для промышленной обработки гусиного пуха. К сожалению, даже высококачественный пух после машиной промывки и сушки скатывается в шарики. В этом случае пух теряет сцепляемость и теплоизоляционные свойства, что сокращает срок эксплуатации.
Русский стандарт гагачьего пуха (Russian hand washed eiderdown).
Разработан нашей лабораторией. Выстроена непрерывная цепочка от сбора до изготовления продукции. Контроль технологического процесса осуществляется на каждом этапе. Пух промыт и высушен вручную. При ручном методе промывки и сушки из гагачьего пуха удаляется вся мелкая взвесь, и структура пушинки не изменяется. Всё это гарантирует высочайшее качество гагачьего пуха. Такого пуха гораздо меньше, чем исландского. При правильной эксплуатации изделие из такого гагачьего пуха может служить двадцать лет и более.
Какой же гагачий пух используют производители пуховых изделий на рынке в России?
Я бы хотел уточнить – на рынке Москвы. Только в Москве можно найти действительно качественное изделие. Хотя и здесь не обходится без курьёзов. Вот, к примеру, уважаемая мною компания Bosco di Chiledgi на своём сайте предлагает изделия для детей на гагачьем пуху. Руководству срочно нужно исправить эту непростительную ошибку и честно написать «качественные детские изделия на гусином или утином пуху». Куртки на гагачьем пуху – это элитарный, штучный товар, и такие куртки шьются исключительно на заказ. Проще заказать костюм от Brioni или купить Aston Martin 77. Я знаю всего несколько человек, которые действительно могут сказать, что они носят одежду и спят под одеялом на гагачьем пуху. Это обладатель «золотого ледоруба» Валерий Бабанов и дизайнер роскошных интерьеров Владимир Фуражкин. Для Валерия гагачий пух – это жизненно важное тепло, так необходимое на восхождениях, для Владимира гагачий пух – это предмет роскоши и комфорта. И тот, и другой используют самый лучший гагачий пух, промытый и высушенный вручную.
Я бы хотел обратить ваше внимание на изделия из гагачьего пуха, которые действительно можно приобрести в Москве. Это одеяла на гагачьем пуху и одежда на заказ. Какие же производители представлены на московском рынке? Я имею в виду только добросовестных производителей, которые гарантированно предлагают изделия из качественного гагачьего пуха. Это всемирно известные немецкие и швейцарские производители пуховых изделий для сна, одна компания из России, с которой мы сотрудничаем по одеялам и одна компания, которая делает одежду из пуха гаги на заказ.
Есть ещё одно преимущество – российский производитель использует только гагачий пух, обработанный нашей лабораторией. А мы, в свою очередь, гарантируем высокое качество за счёт правильного сбора, точного соблюдения технологического процесса механической обработки, а так же ручную промывку и ручную сушку. Всё это обеспечивает длительный срок эксплуатации изделия на гагачьем пуху. Купленное одеяло или сшитую на заказ куртку можно сдать на летнее хранение, при этом вам сделают химчистку куртки и осуществят мелкий ремонт одеяла. За дополнительную плату куртку можно обновлять каждые два года, используя тот же пух. Так же можно поступить с одеялом, причем, если возникнет необходимость, ткань можно заменить.
В этом году наша лаборатория запускает новый продукт, который до этого не был представлен на московском рынке. Первая новинка – это специально созданный термо-чехол из гагачьего пуха для любителей кофе, который модницы могут использовать в холодное время года как муфту. Второе – это шапочка и варежки на гагачьем пуху. В таких варежках рукам гарантирован идеальный термо- и гидробаланс, который может обеспечить только гагачий пух.
Ну и последний вопрос: удовлетворены ли вы той ситуацией с гагачьим пухом, которая существует на рынке России, и что бы вы хотели изменить?
В начале нашей беседы вы сами дали ответ на этот вопрос: в России знают и любят гагачий пух, но при этом не знают, как он выглядит.
Клиенту нужно просвещаться и учится работать с информацией. Я как-то услышал фразу, которую произнёс Леонид Парфёнов в одном из своих интервью. Попробую её воспроизвести: «Информация – это то, что человек нашёл самостоятельно. Всё, что лежит на поверхности – это реклама».
Я буду рад, если это интервью будет воспринято, как «информация».
Мы попросили Валерия Бабанова дать свой комментарий относительно используемой им экипировки на пухе гаги
Пуховку на гагачьем пуху мне подарил Владимир Богданов в 2002 г. Модель пуховки называется Эрцог – она была изготовлена для меня фирмой БАСК.
На восхождения я её не беру – жалко. Знаю, что это очень дорогая штука. Но после восхождения, внизу в базовом лагере, мне очень приятно носить именно эту пуховку. Могу сравнить её с камином. Не знаю, почему так происходит, но тепло, которое идёт от гагачьего пуха, какое-то особое. Приходят на ум такие сравнения для качества тепла: сухое, насыщенное, долгое… В пуховке не жарко, не душно, но очень тепло. Это как в русской бане – при одной и той же температуре пар бывает очень разный. Трудно объяснить на словах, но тело прекрасно различает качество тепла.
Различия между гагачьей пуховкой и пуховкой на гусином пуху довольно заметны.
- Гагачий пух не перемещается в пуховых отсеках: пушинки сцеплены между собой, поэтому не возникает холодных областей.
- Когда надеваешь холодную пуховку, тепло становится практически сразу, и это тепло дольше сохраняется.
- Гагачий пух расправляется из сжатого состояния почти моментально.
Не думаю, что в условиях выживания, в которых мне приходилось бывать в последние несколько лет довольно часто, эти различия являются определяющими. Но в условиях релаксации и отдыха мне нужна такая пуховка. Возможно, я стал суеверным, то эта пуховка входит в мой особый набор вещей, которые я отношу к своим талисманам.
Изделия из высококачественного российского гагачего пуха вы может сшить на заказ в НПФ «БАСК»!
+7 (495) 775-13-13
Интервью подготовлено при поддержке сайта Гагачий пух
Читайте также:
Дикий пух. Как мы собираем лучший пух в мире
«Настоящий гагачий пух». Джон Свейнссон
«Гагачий пух». Эдвард Поснетт
Виды теплообмена | Физика
Внутреннюю энергию тела можно изменить двумя способами: путем совершения работы и путем теплообмена. Теплообмен может осуществляться по-разному. Различают три вида теплообмена: теплопроводность, конвекция и лучистый теплообмен.
1. Теплопроводность — это вид теплообмена, при котором происходит непосредственная передача энергии от частиц более нагретой части тела к частицам его менее нагретой части При теплопроводности само вещество не перемещается вдоль тела — переносится лишь энергия.
Обратимся к опыту. Закрепим в штативе толстую медную проволоку, а к проволоке прикрепим воском (или пластилином) несколько гвоздиков (рис. 63). При нагревании свободного конца проволоки в пламени спиртовки воск плавится и гвоздики постепенно отпадают от проволоки. Причем сначала отпадают те, которые расположены ближе к пламени, затем по очереди все остальные. Объясняется это следующим образом.
Сначала увеличивается скорость движения тех частиц металла, которые ближе к пламени. Температура проволоки в этом месте повышается. При взаимодействии этих частиц с соседними скорость последних также увеличивается, в результате чего повышается температура следующей части проволоки. Затем увеличивается скорость движения следующих частиц и т. д., пока не прогреется вся проволока.
Различные вещества имеют разную теплопроводность: у одних она больше, у других — меньше. Из жизненного опыта известно, что если, например, взять какой-либо железный предмет (допустим, гвоздь) и начать нагревать его в огне, то долго удерживать его в руке мы не сможем. И наоборот, горящую спичку можно держать до тех пор, пока пламя не коснется руки. Это означает, что дерево обладает меньшей теплопроводностью, чем железо.
Наибольшей теплопроводностью обладают металлы, особенно серебро и медь. У жидкостей (за исключением расплавленных металлов) теплопроводность невелика. У газов она еще меньше, так как молекулы их находятся сравнительно далеко друг от друга и передача энергии от одной частицы к другой затруднена.
Если теплопроводность различных веществ сравнить с теплопроводностью меди, то окажется, что у железа она примерно в 5 раз меньше, у воды — в 658 раз меньше, у пористого кирпича — в 840 раз меньше, у свежевыпавшего снега — почти в 4000 раз меньше, у ваты, древесных опилок и овечьей шерсти — почти в 10 ООО раз меньше, а у воздуха она примерно в 20 000 раз меньше.
Плохая теплопроводность шерсти, пуха и меха (обусловленная наличием между их волокнами воздуха) позволяет телу животного сохранять вырабатываемую организмом энергию и тем самым защищаться от охлаждения. Защищает от холода и жировой слой, который имеется у водоплавающих птиц, китов, моржей, тюленей и некоторых других животных.
2. Конвекция — это теплообмен в жидких и газообразных средах, осуществляемый потоками (или струями) вещества.
Общеизвестно, например, что жидкости и газы обычно нагревают снизу. Чайник с водой ставят на огонь, радиаторы отопления помещают под окнами около пола. Случайно ли это?
Поместив руку над горячей плитой или над включенной лампой, мы почувствуем, что от плиты или лампы вверх поднимаются теплые струи воздуха. Эти струи могут даже вращать небольшую бумажную вертушку, помещенную над лампой (рис. 64). Откуда берутся эти струи?
Часть воздуха, которая соприкасается с плитой или лампой, нагревается и вследствие этого расширяется. Ее плотность становится меньше, чем у окружающей (более холодной) среды, и под действием архимедовой (выталкивающей) силы она начинает подниматься вверх. Ее место внизу заполняет холодный воздух. Через некоторое время, прогревшись, этот слой воздуха также поднимается вверх, уступая место следующей порции воздуха, и т. д. Это и есть конвекция.
Точно так же переносится энергия и при нагревании жидкости. Чтобы заметить перемещение слоев жидкости при нагревании, на дно стеклянной колбы с водой опускают кристаллик красящего вещества (например, перманганата калия) и колбу ставят на огонь. Через некоторое время нагретые нижние слои воды, окрашенные перманганатом калия в фиолетовый цвет, начинают подниматься вверх (рис. 65). На их место приходит холодная вода, которая, прогревшись, также начинает подниматься вверх, и т. д. Постепенно вся вода оказывается нагретой. Именно благодаря конвекции происходит нагревание воздуха и в наших жилых комнатах (рис. 66).
Будут ли прогреваться воздух и жидкость, если их нагревать не снизу, а сверху? Обратимся к опыту. Поместив в пробирку кусочек льда и придавив его гайкой или металлической сеточкой, нальем туда же холодную воду. Нагревая ее сверху, можно довести верхние слои воды до кипения (рис. 67), между тем как нижние слои воды останутся холодными (и даже лед там не растает). Объясняется это тем, что при таком способе нагревания конвекции не происходит. Нагретым слоям воды некуда подниматься: ведь они и так уже наверху. Нижние же (холодные) слои так и останутся внизу. Правда, вода может прогреться благодаря теплопроводности, однако она очень низкая, так что пришлось бы долго ждать, пока это произошло бы.
Точно так же можно объяснить, почему не прогревается воздух, находящийся в пробирке, которая изображена на рисунке 68. Горячим он становится лишь сверху, внизу же он остается холодным.
Опыты, изображенные на рисунках 67 и 68, показывают не только то, что жидкости и газы следует нагревать снизу, но и то, что у них очень плохая теплопроводность.
3. Лучистый теплообмен — это теплообмен, при котором энергия переносится различными лучами. Это могут быть солнечные лучи, а также лучи, испускаемые нагретыми телами, находящимися вокруг нас.
Так, например, сидя около камина или костра, мы чувствуем, как тепло передается от огня нашему телу. Однако причиной такой теплопередачи не может быть ни теплопроводность (которая у воздуха, находящегося между пламенем и телом, очень мала), ни конвекция (так как конвекционные потоки всегда направлены вверх). Здесь имеет место третий вид теплообмена —лучистый теплообмен.
Возьмем теплоприемник — прибор, представляющий собой плоскую круглую коробочку, одна сторона которой отполирована, как зеркало, а другая покрыта черной матовой краской. Внутри коробочки находится воздух, который может выходить через специальное отверстие. Соединим теплоприемник с жидкостным манометром (рис. 69) и поднесем к теплоприемнику электрическую плитку или кусок металла, нагретый до высокой температуры. Мы заметим, что столбик жидкости в манометре переместится. Но это означает, что воздух в теплоприемнике нагрелся и расширился. Нагревание воздуха в теплоприемнике можно объяснить лишь передачей ему энергии от нагретого тела. Каким образом передавалась эта энергия? Ясно, что не теплопроводностью, так как между нагретым телом и теплоприемником находится воздух, обладающий малой теплопроводностью. Не было здесь и конвекции: ведь теплоприемник расположен не над нагретым телом, а рядом с ним. Энергия в данном случае передавалась с помощью невидимых лучей, испускаемых нагретым телом. Эти лучи называют тепловым излучением.
С помощью теплового излучения (как видимого, так и невидимого) передается на Землю и солнечная энергия. Отличительной особенностью этого вида теплообмена является возможность осуществления через вакуум.
Тепловое излучение испускают все тела: электрическая плитка, лампа, земля, стакан с чаем, тело человека и т. д. Но у тел с низкой температурой оно слабое. И наоборот, чем выше температура тела, тем больше энергии оно передает путем излучения.
Когда излучение, распространяясь от тела-источника, достигает других тел, то часть его отражается, а часть ими поглощается. При поглощении энергия теплового излучения превращается во внутреннюю энергию тел, и они нагреваются.
Светлые и темные поверхности тел поглощают излучение по-разному. Если теплоприемник (см. рис. 69) повернуть к излучающему телу сначала черной, а затем блестящей поверхностью, то столбик жидкости в манометре в первом случае переместится на большее расстояние, чем во втором. Это показывает, что тело с темной поверхностью лучше поглощает энергию (и, следовательно, сильнее нагревается), чем тело со светлой или зеркальной поверхностью.
Тела с темной поверхностью не только лучше поглощают, но и лучше излучают энергию. Больше излучая, они и остывают быстрее. Например, в темном чайнике горячая вода остывает быстрее, чем в светлом.
Способность по-разному поглощать энергию излучения находит широкое применение в технике. Например, воздушные шары и крылья самолетов часто красят серебристой краской, чтобы они меньше нагревались солнечными лучами. Если же нужно использовать солнечную энергию (например, для нагревания некоторых приборов, установленных на искусственных спутниках), то эти устройства окрашивают в темный цвет.
1. Перечислите виды теплообмена. 2. Что такое теплопроводность? У каких тел она лучше, у каких хуже? 3. Как вы думаете, о чем свидетельствует опыт, изображенный на рисунке 70? 4. Что такое конвекция? 5. Почему жидкости и газы нагревают снизу? 6. Почему конвекция невозможна в твердых телах? 7. Какой вид теплообмена может осуществляться через вакуум? 8. Как устроен теплоприемник? 9. Какие тела лучше и какие хуже поглощают энергию теплового излучения? 10. Почему в светлом чайнике горячая вода дольше не остывает, чем в темном?
Экспериментальные задания. 1. Находясь дома, на улице или в транспорте, проверьте, какие предметы на ощупь кажутся более холодными. Что вы можете сказать об их теплопроводности? Составьте на основе своих наблюдений ряд из названий материалов в порядке возрастания их теплопроводности. 2. Включите электрическую лампу и поднесите к ней (не касаясь лампы) руку. Что вы чувствуете? Какой из видов теплообмена происходит в данном случае? 3. Греет ли шуба? Для выяснения этого возьмите термометр и, заметив его показание, закутайте в шубу. Спустя полчаса выньте его. Изменились ли показания термометра? Почему?
Эксперимент подтверждающий малую теплопроводность бумаги. Исследовательская работа «теплопроводность»
Вариант
1.
Оборудование:
Пробирка с водой и спиртовка.
Для
демонстрации плохой теплопроводности
жидкости в пробирку
на ¾ объема наливают воды. Держа пробирку
в руках под небольшим
углом над пламенем спиртовки, нагревают
воду у открытого конца
(рис. 130). Показывают, что вода здесь
быстро закипает, однако
внизу большого нагрева не ощущается.
Рис.
130 Рис. 2.105
Рис.
131
Опыт 4. Теплопроводность газов
Вариант
1
. Оборудование:
две пробирки, две пробки, два стержня,
два шарика, спиртовка, штатив, подвес.
Плохую
теплопроводность воздуха демонстрируют
с помощью двух одинаковых пробирок,
закрытых пробками, через которые
пропущены короткие стержни. К концам
стержней прикрепляют пластилином или
парафином стальные шарики (рис. 131).
Пробирки над спиртовкой располагают
так, чтобы в одной из них происходила
конвекция, а в другой теплопроводность
воздуха. Замечают, что в одной пробирке
шарик быстро отпадает от стержня.
Вариант
2.
См. рис.
2.105
Опыт 5. Конвекция жидкостей
Вариант
1.
Оборудование:
прибор для демонстрации конвекции
жидкости, марганцовокислый
калий, спиртовка, штатив.
Прибор,
представляющий собой замкнутую стеклянную
трубку
(рис. 132), укрепляют в лапке штатива.
(Лучше подвесить,
чем зажимать трубку в нижней части, ибо
в последнем случае
больше вероятности разрушить стекло.)
Через верхнее отверстие
любого колена трубку наполняют водой
так, чтобы по всему
замкнутому пути внутри трубки не было
пузырьков воздуха.
При
выполнении опыта в ложечку
с сеткой помещают
кристаллики марганцовокислого
калия и oпускают
ее в колено (можно
одновременно опустить две
ложечки с кристалликами
марганцовокислого
калия в оба колена).
Затем к нижней части
этого колена подносят
спиртовку и наблюдают
конвекцию.
Рис. 132
Рис. 133
Опыт 6. Конвекция газов
Вариант
1.
Оборудование:
спиртовка,
спички, бумажная змейка, металлическое
острие.
Для
демонстрации конвекции
газа изготовляют бумажную
змейку, которая
вращается в потоке восходящего
горячего воздуха,
идущего от спиртовки или электроплитки
(рис. 133). (При установке
змейки на острие нельзя прокалывать
бумагу.)
Опыт 7. Нагревание излучением
Вариант
1.
Оборудование:
теплоприемник, манометр открытый
демонстрационный,
настольная лампа (или электроплитка).
Теплоприемник,
соединенный трубкой с демонстрационным
манометром
(см. рис. 123), укрепляют в штативе напротив
излучателя. В качестве излучающего тела
можно взять электроплитку, сосуд с
горячей водой и пр. К нему сбоку подносят
теплоприемник темной
стороной и наблюдают за показаниями
манометра в течение
1-2 мин.
Затем
поворачивают теплоприемник блестящей
поверхностью
к лампе, расположенной на том же расстоянии
от теплоприемника, и в течение того же
времени следят за показанием манометра.
Делают вывод.
Во
второй серии опытов накал лампы (или
расстояние до излучателя) уменьшают и
вновь наблюдают изменение показаний
манометра в прежних условиях. Делают
вывод.
Вариант
2.
См. Рис. 2.99; 2.101.
Вопрос.
В каком случае изменение показаний
жидкостного манометра
происходит
быстрее, если теплопередатчик и
теплоприемник обращены друг к другу
блестящими поверхностями или если они
обращены
друг к другу зачерненными поверхностями?
Рис.
123 Рис. 2.101
Рис. 2.99
Внимание! Администрация сайта сайт не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.
- Участник:
Шароглазова Ксения Сергеевна
- Руководитель: Печерская Светлана Юрьевна
Цель данной работы: изучение явления теплопроводности, проделав ряд опытов с твердыми телами, жидкостями и газами.
Актуальность:
В наше время разрабатываются новые материалы. Знания о теплопроводности различных веществ позволяет не только широко использовать их, но и предотвращать их вредное воздействие в быту, технике и природе.
Цель:
изучение явления теплопроводности, проделав ряд опытов с твердыми телами, жидкостями и газами.
Задачи:
- изучить теоретический материал по данному вопросу;
- исследовать теплопроводность твердых тел;
- исследовать теплопроводность жидкостей;
- исследовать теплопроводность газов;
- сделать выводы о полученных результатах.
Гипотеза:
все вещества (твердые, жидкие и газообразные) имеют разную теплопроводность.
Оборудование:
спиртовка, штатив, деревянная палочка, стеклянная палочка, медная проволока, пробирка с водой.
Элементы УМК к учебнику А.В.Перышкина:
учебник «Физика. 8 класс» А.В.Перышкина
Внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку. Явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте называется теплопроводностью.
Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом.
Видео: https://cloud.mail.ru/public/JCFY/CFTcCeqhE
.
Исследование теплопроводности твердых тел на примере деревянной палочки, стеклянной палочки и медного стержня
Внесем в огонь конец деревянной палки. Он воспламенится.
Вывод:
дерево обладает плохой теплопроводностью.
Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец останется холодным.
Вывод:
стекло имеет плохую теплопроводность.
Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем.
Вывод:
металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь.
Рассмотрим передачу тепла от одной части твердого тела к другой на следующем опыте. Закрепим один конец толстой медной проволоки в штативе. К проволоке прикрепим воском несколько гвоздиков (рис. 6). При нагревании свободного конца проволоки в пламени спиртовки воск будет таять. Гвоздики начнут постепенно отваливаться. Сначала отпадут те, которые расположены ближе к пламени, затем по очереди все остальные.
Выясним, как происходит передача энергии по проволоке. Скорость колебательного движения частиц металла увеличивается в той части проволоки, которая ближе расположена к пламени. Поскольку частицы постоянно взаимодействуют друг с другом, то увеличивается скорость движения соседних частиц. Начинает повышаться температура следующей части проволоки и т. д. Следует помнить, что при теплопроводности не происходит переноса вещества от одного конца тела к другому.
Опыт 2. Исследование теплопроводности жидкостей на примере воды
Рассмотрим теперь теплопроводность жидкостей. Возьмем пробирку с водой и станем нагревать ее верхнюю часть. Вода у поверхности скоро закипит, а у дна пробирки за это время она только нагреется (рис. 7). Значит, у жидкостей теплопроводность невелика, за исключением ртути и расплавленных металлов. Это объясняется тем, что в жидкостях молекулы расположены на больших расстояниях друг от друга, чем в твердых телах.
Вывод:
теплопроводность жидкостей меньше теплопроводности металлов.
Опыт 3. Исследование теплопроводности газов
Исследуем теплопроводность газов.
Сухую пробирку наденем на палец и нагреем в пламени спиртовки донышком вверх (рис. 8). Палец при этом долго не почувствует тепла. Это связано с тем, что расстояние между молекулами газа еще больше, чем у жидкостей и твердых тел.
Вывод
:
теплопроводность у газов еще меньше, чем у жидкостей. Итак, теплопроводность у различных веществ различна.
Выводы и их обсуждение
Вывод:
Проведенные опыты показывают, что теплопроводность у различных веществ различна. Наибольшей теплопроводность обладают металлы, у жидкостей теплопроводность невелика и самая малая теплопроводность у газов.
Используя §4 учебника физики для 8 класса, представим результаты в виде таблицы:
Объяснение явления теплопроводности с молекулярно-кинетической точки зрения:
теплопроводность — это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В металлах частицы расположены близко, они постоянно взаимодействуют друг с другом. Скорость колебательного движения в нагретой части металла увеличивается и быстро передается соседним частицам. Повышается температура следующей части проволоки. В жидкостях и газах молекулы расположены на больших расстояниях, чем в металлах. В пространстве, где нет частиц, теплопроводность осуществляться не может.
Применение теплопроводности
Теплопроводность на кухне
Теплопроводность и ее регулировка важны в процессе приготовления пищи. Часто во время тепловой обработки продукта необходимо поддерживать высокую температуру, поэтому на кухне используют металлы (медь, алюминий…), так их теплопроводность и прочность выше, чем у других материалов. Из металла делают кастрюли, сковородки, противни, и другую посуду. Когда они соприкасаются с источником тепла, это тепло легко передается пище. Иногда бывает необходимо уменьшить теплопроводность — в этом случае используют кастрюли из материалов с более низкой теплопроводностью, или готовят способами, при которых пище передается меньшее количество тепла. Приготовление блюд на водяной бане — один из примеров уменьшения теплопроводности. Для посуды, предназначенной для приготовления пищи, не всегда используют материалы с высокой теплопроводностью. В духовом шкафу, например, часто используют керамическую посуду, теплопроводность которой намного ниже, чем у металлической посуды. Их самое главное преимущество — способность держать температуру. Хороший пример использования материалов с высокой теплопроводностью на кухне — плита. Например, конфорки электроплиты сделаны из металла, чтобы обеспечить хорошую передачу тепла от раскаленной спирали нагревательного элемента к кастрюле или сковородке. Люди используют материалы с низкой теплопроводностью между руками и посудой, чтобы не обжечься. Ручки многих кастрюль сделаны из пластмасс, а противни вынимают из духовки прихватками из ткани или пластмассы с низкой теплопроводностью.
Материалы с невысокой теплопроводностью также используют для поддержания температуры пищи неизменной. Так, например, чтобы утренний кофе или суп, который берут в путешествие или на обед на работу, оставался горячим, его наливают в термос, чашку или банку с хорошей теплоизоляцией. Чаще всего в них пища остается горячей (или холодной) благодаря тому, что между их стенками находится материал, плохо проводящий тепло. Это может быть пенопласт или воздух, который находится в закрытом пространстве между стенками сосуда. Он не дает теплу перейти в окружающую среду, пище — остыть, а рукам — получить ожог. Пенопласт используют также для стаканчиков и контейнеров для пищи навынос. В вакуумном сосуде Дьюара (известном как «термос», по названию торговой марки) между наружной и внутренней стенкой почти нет воздуха — это еще больше уменьшает теплопроводность.
Отопительная система
Задача любой системы отопления является эффективная передача энергии от теплоносителя (горячей воды) в помещение. Для этого используют специальные элементы системы отопления – радиаторы. Радиаторы предназначены для повышения теплопередачи накопившейся в системе тепловой энергии в помещение. Они представляют собой секционную или монолитную конструкцию, внутри которой циркулирует теплоноситель. Основные характеристики радиатора отопления: материал изготовления, тип конструкции, габаритные размеры (кол-во секций), теплоотдача. Чем выше этот показатель, тем меньше тепловых потерь будет при передаче энергии от теплоносителя в помещение. Лучший материал для изготовления радиаторов – это медь. Наиболее часто используют чугунные радиаторы; алюминиевые радиаторы; стальные радиаторы; биметаллические радиаторы.
Теплопроводность для тепла
Мы используем материалы с низкой теплопроводностью для поддержания постоянной температуры тела. Примеры таких материалов — шерсть, пух, и синтетическая шерсть. Кожа животных покрыта мехом, а птиц — пухом с низкой теплопроводностью, и мы заимствуем эти материалы у животных или создаем похожие на них синтетические ткани, и делаем из них одежду и обувь, которые защищают нас от холода. Кроме этого мы делаем одеяла, так как спать под ними удобнее, чем в одежде. Воздух имеет низкую теплопроводность, но проблема с холодным воздухом в том, что обычно он может свободно двигаться в любом направлении. Он вытесняет теплый воздух вокруг нас, и нам становится холодно. Если движение воздуха ограничить, например, заключив его между внешней и внутренней стенками сосуда, то он обеспечивает хорошую термоизоляцию. У снега и льда тоже низкая теплопроводность, поэтому люди, животные и растения используют их для теплоизоляции. В свежем не утрамбованном снеге внутри находится воздух, что еще больше уменьшает его теплопроводность, особенно потому, что теплопроводность воздуха ниже теплопроводности снега. Благодаря этим свойствам, ледяной и снежный покров защищает растения от замерзания. Животные роют ямки и целые пещеры для зимовья в снегу. Путешественники, переходящие через заснеженные районы, иногда роют подобные пещеры, чтобы в них переночевать. С древнейших времен люди строили убежища изо льда, а сейчас создают целые развлекательные центры и гостиницы. В них часто горит огонь, и люди спят в мехах и синтетических спальных мешках.
Для обеспечения нормальной жизнедеятельности в организме людей и животных необходимо поддерживать определенную температуру в очень узких пределах. У крови и других жидкостей, а также у тканей разная теплопроводность и ее можно регулировать в зависимости от потребностей и окружающей температуры. Так, например, организм может изменить количество крови на участке тела или во всем организме с помощью расширения или сужения сосудов. Наше тело также может сгущать и разжижать кровь. При этом теплопроводность крови, а, следовательно, и части тела, где эта кровь течет, изменяется.
Теплолечение
Современные методы лечения теплом могут быть разделены на три большие группы: 1) контактное приложение нагретых сред; 2) светотепловое облучение и 3) использование теплоты, образующейся в тканях при прохождении высокочастотного электрического тока. Остановимся на использовании нагретых сред. Для теплолечения выбираются среды, позволяющие создать в них значительный запас теплоты. Эта теплота затем должна медленно и постепенно передаваться организму во все время процедуры. Для этого среда должна иметь, возможно, высокую теплоемкость и сравнительно низкие теплопроводность и конвекционную способности. Для теплолечения в основном применяют следующие среды: воздух, воду, торф, лечебные грязи и парафин.
Теплопроводность в бане
Многие любят отдыхать в саунах или банях, но сидеть там на скамейках из материала с высокой теплопроводностью — было бы невозможно. Требуется много времени, чтобы сравнять температуру таких материалов с температурой тела, поэтому вместо них используют материалы с низкой теплопроводностью, например дерево, верхние слои которого намного быстрее принимают температуру тела. Так как в сауне температура поднимается достаточно высоко, люди часто надевают на голову шапочки из шерсти или войлока, чтобы защитить голову от жары. В турецких банях хамамах температура намного ниже, поэтому там для скамеек используют материал с более высокой теплопроводностью — камень.
Тепло ли колючим зверям в иголках?
Шерсть не только спасает зверей от холода, но и служит средством защиты. А чтобы защита была внушительнее и надежнее, волосяной покров порой видоизменяется, превращаясь в своеобразные доспехи. Иглы, например. Но вот сохраняет ли такое облачение присущие шерсти свойства, не зябнут ли ежи и дикобразы в своих колючих шубках?
Ученые Института проблем экологии и эволюции им. А.Н. Северова РАН обстоятельно изучили теплопроводные и теплоизоляционные свойства иголок, взятых со спины взрослого самца североамериканского дикобраза из коллекции Зоологического музея МГУ, и убедились, что греют эти самые иголки очень даже неплохо. Чтобы понять внутреннюю структуру игл, на них делали тонкие срезы, на которые напыляли золото для исследования в электронном микроскопе. Кератин — главная составляющая иголок — проводит тепло в 10 раз лучше, чем воздух. И благодаря этому иглы увеличивают теплопроводность «доспехов». Следовательно, возрастают и потери тепла с тела животного. Однако внутренняя пористая структура игл создает дополнительное экранирование теплового излучения, что, скорее всего, и компенсирует увеличение теплопроводности. Так что дикобраз, как и другие колючие звери, вовсе не страдает от холода. Иглистый покров сохраняет ровно столько тепла, сколько нужно теплокровному животному такого размера.
Полипропилен
Пока является лучшей основой для материалов (волокон, нитей, пряжи, полотен, тканей), используемых в производстве нательной спортивной одежды, термобелья и термоносков. Среди всех синтетических материалов, применяемых в этой области, он обладает самой низкой теплопроводностью. Поэтому одежда из полипропилена позволяет наилучшим образом сохранить тепло зимой и прохладу летом.
Какой материал имеет самую высокую теплопроводность?
Материалом с наивысшей теплопроводностью является вовсе не какой-нибудь металл (серебро или медь), как думают многие. Самую высокую теплопроводность имеет материал, который похож на стекло – алмаз. Его теплопроводность почти в 6 раз больше, чем у серебра или меди. Если изготовить чайную ложечку из алмаза, то воспользоваться ею не удастся, так как она будет обжигать пальцы в ту же секунду.
Из чего изготавливают сваи при строительстве зданий в регионах с вечной мерзлотой?
Большие трудности строителям зданий доставляет просадка фундамента особенно в регионах с вечной мерзлотой. Дома часто дают трещины из-за подтаивания грунта под ними. Фундамент передает почве какое-то количество теплоты. Поэтому здания начали строить на сваях. В этом случае тепло передается только теплопроводностью от фундамента свае и далее от сваи грунту. Из чего же надо делать сваи? Оказывается, сваи, выполненные из прочного твердого материала, внутри должны быть заполнены керосином. Летом свая проводит тепло сверху вниз плохо, т.к. жидкость обладает низкой теплопроводностью. Зимой свая за счет конвекции жидкости внутри неё, наоборот, будет способствовать дополнительному охлаждению грунта.
«Огнеупорный шарик»
Обычный воздушный шарик, надутый воздухом, легко воспламеняется в пламени свечи. Он тут же лопается. Если же к пламени свечи поднести такой же шарик, заполненный водой, он становится «огнеупорным». Теплопроводность воды в 24 раза больше, чем у воздуха. Значит, вода проводит тепло в 24 раза быстрее, чем воздух. Пока вода не испарится внутри шарика – он не лопнет.
Коробицын Денис
Теплопроводность различных материалов при увеличении температуры нагрева.
Скачать:
Предварительный просмотр:
IВВЕДЕНИЕ
Однажды, я задал вопрос маме, почему она всегда дает нам деревянные ложки, когда мы садимся кушать. Она ответила, что деревянные нагреваются медленнее, чем железные и ими не обожжешься. Я задумался, ведь я замечал, что металлические предметы очень быстро нагреваются, а вот почему? Оказалось, что у всех твердых материалов есть такое свойство, называется – теплопроводность. Мне стало интереснокакие материалы проводят тепло быстрее, а какие медленнее, и что случится если увеличить температуру нагрева, будут ли эти материалы нагреваться в таком же порядке?
Гипотеза: я думаю, что разные материалы имеют разную теплопроводность и что с увеличением температуры нагрева, они будут нагреваться в том же порядке.
Объект: теплопроводность.
Предмет: теплопроводность некоторых материалов.
Цель: Определить, почему по-разному нагреваются различные предметы, притом, что они нагревались в одинаковых условиях, но были изготовлены из разных материалов.
Задачи:
1) изучить литературу и материалы интернета по вопросу теплопроводности материалов;
2) провести опыт, с целью определения, теплопроводности материалов;
3) познакомить одноклассников с изученной темой.
Для реализации данных задач и подтверждения гипотезы:
- Подберу научную литературу по
по вопросу теплопроводности материалов; - Изучу данную литературу и сделаю выводы;
- Для подтверждения теоритических выводов проведу зксперемент;
- По результатам эксперимента сделаю выводы;
- С результатами данных выводов познакомлю одноклассников
II ОСНОВНАЯ ЧАСТЬ
2.1 Что такое теплопроводность?
Основной источник тепла на Земле — Солнце. Но, кроме того, люди используют много искусственных источников тепла: костер, печку, водяное отопление, газовые и электрические нагреватели и т.д.
Ответить на вопрос, что такое теплота, удалось не сразу. Лишь в XVIII веке стало ясно, что все тела состоят из молекул, что молекулы движутся и взаимодействуют друг с другом. Тогда ученые поняли, что теплота связана со скоростью движения молекул. При нагревании тел скорость молекул увеличивается, а при охлаждении — уменьшается.
Вы знаете, что если в горячий чай опустить холодную ложку, через некоторое время она нагреется. Из примера ясно, что тепло может передаваться от тела более нагретого к телу менее нагретому.
Теплопроводность
– перенос энергии от более нагретых участков тела к менее нагретым, в результате теплового движения и взаимодействия частиц.
Плохой теплопроводностью обладают шерсть, волосы, перья птиц, бумага, пробка и другие пористые тела. Это связано с тем, что между волокнами этих веществ содержится воздух. Самой низкой теплопроводностью обладает вакуум (освобожденное от воздуха пространство).
1. Снег — пористое, рыхлое вещество, в нем содержится воздух. Поэтому снег обладает плохой теплопроводностью и хорошо защищает землю, озимые посевы, плодовые деревья от вымерзания.
2. Кухонные прихватки сшиты из материала, который обладает плохой теплопроводностью. Ручки чайников, кастрюль делают из материалов обладающих плохой теплопроводностью. Все это защищает руки от ожогов, при прикосновении к горячим предметам.
3. Вещества с хорошей теплопроводностью (металлы) используют для быстрого нагревания тел или деталей.
2.1 Проведение эксперимента
Для проведения эксперимента мне понадобилось: стеклянная миска, деревянная, металлическая и пластмассовая ложка, стеклянная трубка, пластилин, фишки, маргарин, секундомер, лист для записи результатов и ручка.
Приготовив все необходимые материалы я приступил к проведению опыта. Я установил ложки и стеклянную трубку вертикально в миску и прикрепил их с помощью пластилина к краям миски. Затем с помощью одинаковых кубиков маргарина я прикрепил фишки к каждому предмету. Далее заполнил миску теплой водой и включил секундомер. Я рассчитывал провести опыт с теплой водой, а затем с кипятком.
После того, как прошло 10 минут, а не одна фишка не сдвинулась с места, я решил, что температура воды недостаточная, для того, чтобы растопить маргарин.
Я слил теплую воду и аккуратно залил кипяток, включил секундомер. Далее я записал, в какой последовательности соскальзывали фишки с предметов:
металлическая ложка – 52 секунды;
стеклянная трубка – 4 минуты 13 секунд;
пластмассовая ложка – 5 минут 7 секунд;
деревянная ложка – 6 минут 18 секунд.
Хочу добавить, что когда соскользнула фишка с металлической ложки, через две минуты я добавил еще кипятка, потому, что маргарин под остальными фишками не таял.
Таким образом, я выяснил, что лучшим проводником тепла является металл, а хуже всех выбранных материалов тепло проводит деревянные предметы. Это значит, что металл имеет высокую теплопроводность, он быстро нагревается и быстро остывает, а дерево наоборот имеет низкую теплопроводность, медленно нагревается и медленно остывает. Еще, я заметил, металлическая ложка нагрелась меньше, чем за минуту, другие предметы нагревались гораздо дольше, это значит, что металл проводит тепло очень быстро, в отличии от пластмасса, стекла и дерева.
III ЗАКЛЮЧЕНИЕ
Таким образом, в результате проведенной работы я выяснил, что теплопроводность это свойство твердых материалов, которое позволяет оценить, как быстро нагревается и остывает тот или иной материал.
В результате проведения опыта было установлено, что самая высокая теплопроводность у металлических предметов, затем у стекла, далее упластмасса и самой маленькой теплопроводностью обладает дерево.
Гипотезу удалось проверить частично, так как температура теплой воды была мала и первую часть опыта провести не удалось. Однако во второй части опыта мы подтвердили гипотезу — разные материалы имеют разную теплопроводность.
IV СПИСОК ЛИТЕРАТУРЫ
1. А. В. Перышкин, Учебник физики — М.: Дрофа, 2010г, — с.11-14
2. Материалы сайта http://class-fizika.narod.ru/8_3.htm
3. Материалы сайта http://elementy.ru/trefil/21095
4. Материалы сайта http://www.fizika.ru/kniga/index.ph
5. Материалы сайта http://class-fizika.spb.ru/index.php/opit/726-op-teplpr
Предварительный просмотр:
I ВВЕДЕНИЕ……………………………………………………………………………………..3
II ОСНОВНАЯ ЧАСТЬ…………………………….……………………………………………4
2.1 Что такое теплопроводность…………………………………………………………………4
2.2. Проведение эксперимента…………………………………………………………………..5
III ЗАКЛЮЧЕНИЕ……………………………………………………………………………….6
IV СПИСОК ЛИТЕРАТУРЫ……………………………………………………………………7
Предварительный просмотр:
Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com
Подписи к слайдам:
Муниципальное автономное образовательное учреждение «Средняя общеобразовательная школа №8 с углубленным изучением отдельных предметов г.Назарово Красноярского края» Теплопроводность материалов Автор: Коробицын Денис 4«В » класс Руководитель: Адольф Е.Я., учитель начальных классов Назарово 2015
Цель: определить, почему по-разному нагреваются различные предметы, притом, что они нагревались в одинаковых условиях, но были изготовлены из разных материалов. Гипотеза: я думаю, разные материалы имеют разную теплопроводность и что с увеличением температуры нагрева, они будут нагреваться в том же порядке.
Задачи: 1) изучить литературу и материалы интернета по вопросу теплопроводности материалов; 2) провести опыт, с целью определения теплопроводности материалов; 3) познакомить одноклассников с изученной темой.
В 18 веке ученые поняли, что теплота связана со скоростью движения молекул. При нагревании тел скорость молекул увеличивается, а при охлаждении уменьшается. Тепло передается от более нагретого тела к менее нагретому.
Теплопроводность – перенос энергии от более нагретых участков тела к менее нагретым, в результате теплового движения и взаимодействия частиц.
Плохой теплопроводностью обладают шерсть, волосы, перья птиц, бумага, пробка и другие пористые тела. Это связано с тем, что между волокнами этих веществ содержится воздух.
Для проведения эксперимента мне понадобилось: стеклянная миска, деревянная, металлическая и пластмассовая ложка, стеклянная трубка, пластилин, фишки, маргарин, секундомер, лист для записи результатов и ручка.
Последовательность соскальзывания фишки с предметов: металлическая ложка – 52 секунды; стеклянная трубка – 4 минуты 13 секунд; пластмассовая ложка – 5 минут 7 секунд; деревянная ложка – 6 минут 18 секунд.
Самая высокая теплопроводность у металла, это значит он быстро нагревается и быстро остывает. Вторым по теплопроводности оказалось стекло, третий – пластмасс. Самая плохая теплопроводность у дерева, оно медленно нагревается и медленно остывает.
Гипотезу удалось проверить частично, так как температура теплой воды была мала и первую часть опыта провести не удалось. Однако во второй части опыта я подтвердил гипотезу — разные материалы имеют разную теплопроводность.
СПАСИБО ЗА ВНИМАНИЕ!
Тема урока:
Урок занимательной физики
по теме «тепловые явления»
Цели урока
:
1. Обучающая: систематизировать знания учащихся по теме «Тепловые явления» и продемонстрировать учащимся занимательные эксперименты с помощью самодельного оборудования.
2. Воспитывающая:
3. Развивающая: развивать логику, четкость и краткость речи, физическую терминологию, навыки обобщения, общую эрудицию учащихся.
Оборудование:
Демонстрации:
План урока
Организационный момент
Постановка цели урока
Актуализация знаний
Демонстрация занимательных экспериментов и их объяснение на основе пройденного ранее материала
Домашнее задание
Итог урока
Ход урока
Организационный момент
Постановка цели урока
На протяжении нескольких уроков мы с вами рассматривали различные тепловые процессы и учились объяснять их на основе современных знаний по физике.
Сегодня на уроке мы с вами рассмотрим ряд занимательных экспериментов по этой теме и объясним наблюдаемое на основе имеющихся у нас знаний.
Актуализация знаний
Но с начала давайте вспомним изученный ранее нами материал.
Вопросы:
Какие явления называются тепловыми?
Приведите примеры тепловых явлений?
Что характеризует температура?
Как связана температура тела со скоростью движения его молекул?
Чем отличается движение молекул в газах, жидкостях и твердых телах?
Демонстрация занимательных экспериментов
Физика вокруг нас! Мы встречаемся с нею повсюду. А какие опыты можно провести дома не используя дорогостоящие приборы и оборудование? Очень простые — занимательные…
Эксперимент №1
«Фокус для новогодней ночи»
Этот фокус лучше всего показывать в новогоднюю ночь в комнате, освещенной лишь елочной гирляндой. Фокусник берет со стола две свечи. Он соединяет их фитилями, произносит «магическое заклинание» — и вот… в месте контакта фитилей появляется дымок, а вслед за ним и огонь. Фокусник разводит свечи в стороны — они горят! В чем секрет фокуса?
Ответ:
Кто увлекается химией, наверно, уже додумался, в чем секрет фокуса — в самовоспламеняющейся смеси. Перед демонстрацией фокуса, приготовьте реквизиты, для этого нужно посыпать фитиль одной из свеч, порошком перманганата калия (марганцовкой), а другой пропитать жидким глицерином. Помните, воспламенение происходит не сразу, требуется некоторое время. Будьте осторожны. Огонь-то настоящий.
Эксперимент №2
« КИПЯТИЛЬНИК»
Может ли кипеть вода при комнатной температуре?
Для ответа на этот вопрос проведём такой опыт: Наполнил одноразовый медицинский шприц, в котором отсутствовала игла, на 1/8 водой. Затем закроем пальцем отверстие и резко вытянем поршень до крайнего положения. Вода внутри шприца «закипела», оставаясь холодной. Почему «кипит» вода?
Ответ:
Температура кипения зависит от давления. Чем меньше давление газа над поверхностью жидкости, тем ниже температура кипения этой жидкости.
Эксперимент №3
«Не может быть?»
Для опыта сварите вкрутую яйцо.
Очистите его от скорлупы. Возьмите листок бумаги размером
80 на 80 мм, сверните его гармошкой и подожгите. Затем опустите горящую бумагу в бутылку с широким горлом.
Через 1-2 сек горлышко накройте яйцом (см.рис) .Горение бумаги прекращается, и яйцо начинает втягиваться в графин. Объясните наблюдаемое явление.
Ответ:
При горении бумаги воздух в нутрии бутылки нагрелся и расширился. Когда пламя потухло, воздух в бутылке охладился и соответственно, его давление уменьшилось, и атмосферное давление затолкнуло яйцо внутрь бутылки.
Замечание
:
Этот опыт можно сделать интереснее, если в горлышко бутылки вставить не до конца очищенный банан. Втягиваясь в бутылку, он одновременно и очистится
Эксперимент №4
«Ползущий стакан»
Возьмите чистое оконное стекло длиной около 30 — 40 см. Под один край стекла подложите два спичечных коробка, так, чтобы образовалась наклонная плоскость. Смочите водой край стакана из тонкого стекла и поставить вверх дном на стекло. Поднести к стенке стакана горящую свечу и стакан медленно поползет. Как это объяснить?
Ответ:
Это объясняется тем, что при нагревании воздух внутри стакана расширяется и чуть приподнимает стакан. Вода мешает воздуху выйти из стакана наружу, в результате сила трения между стаканом и стеклом уменьшается и стакан ползет вниз.
Эксперимент №5
«Наблюдение испарения и конденсации»
Эксперимент №6
Пронаблюдайте конвекцию в холодной и горячей воде, используя в качестве красителя кристаллы марганцовки, каплю зеленки или любые другие красящие вещества. Сравните характер и скорость конвекции и сделайте выводы
Эксперимент №7
Интересно, что…
Самый длительный в истории научных исследований эксперимент проходит в одном из университетов Австралии. Первый декан физического факультета этого университета Т.Парнелл еще в 1927 г. расплавил немного битума, залил его в воронку с пробкой на конце, дал ему в течение трех лет охладиться и отстояться, а затем вынул пробку. С тех пор в среднем 1 раз в 9 лет из воронки падает капля смолы в подставленный внизу стакан. Последняя капля упала на Рождество в 1999 г. Полагают, что воронка опустеет не раньше, чем еще через 100 лет.
НАРОДНАЯ МУДРОСТЬ
Пословицы:
«Много снега — много хлеба» Почему?
Ответ:
Снег, обладает плохой теплопроводностью, т.е. снег является «шубой» для земли, он сохраняет ее тепло. Шуба толстая, мороз не доберется до озимых, предохранит их от вымерзания.
«Без крышки самовар не кипит, без матери ребенок не резвиться». Почему самовар без крышки долго не закипает?
Ответ:
При открытой крышке часть молекул, имеющих большую кинетическую энергию, будет улетать с поверхности воды, унося с собой энергию.
«Замерз — как на дне морском.» А почему на морском дне всегда холодно?
Ответ:
Солнечные лучи не прогревают глубокие слои воды: тепловые, инфракрасные лучи — поглощаются почти все водной поверхностью. Кроме того, вода имеет сравнительно низкую теплопроводность.
Задачи – загадки
Зимой — греет, весной — тлеет, летом — умирает, осенью — летает.
(Снег.)
Мир обогревает, усталости не знает.
(Солнце.)
Как энергия Солнца достигает Земли?
Ответ.
Излучением. (Электромагнитными волнами)
Висит груша — нельзя скушать; не бойся — тронь, хоть внутри и огонь.
(Электрическая лампочка.
)
Без ног бежит, без огня горит.
(Электричество.)
Как Солнце горит, быстрее ветра летит, дорога в воздухе лежит, по силе себе равных не имеет.
(Молния.)
Кто не учившись, говорит на всех языках?
(Эхо.)
По морю идет, идет, а до берега дойдет — тут и пропадет.
(Волна.)
Вокруг носа вьется, а в руки не дается.
(Запах.)
Без крыльев, без тела за тысячу верст прилетела.
(Радиоволна.
)
Как можно пронести воду в решете?
(Заморозив воду.)
Домашнее задание
Приготовьте в морозилке лед. Сложите его в целлофановый пакет и оберните пуховым платком или обложите ватой. Можно дополнительно завернуть в шубу. Оставьте этот сверток на 5–7 ч, затем проверьте сохранность льда. Объясните наблюдаемое состояние.
Предложите дома способ сохранения замороженных продуктов при размораживании холодильника.
Итог урока
Сегодня на уроке мы с вами вспомнили, что такое тепловые явления, пронаблюдали примеры тепловых явлений на опытах, поставленных с помощью элементарного, подручного оборудования и объяснили эти явления.
Подведение итогов урока, выставление оценок.
Внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим.
Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку. Явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте называется теплопроводностью.
Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом. Внесем в огонь конец деревянной палки. Он воспламенится. Другой конец палки, находящийся снаружи, будет холодным. Значит, дерево обладает плохой теплопроводностью. Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец останется холодным. Следовательно, и стекло имеет плохую теплопроводность. Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем. Значит, металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь.
Рассмотрим передачу тепла от одной части твердого тела к другой на следующем опыте. Закрепим один конец толстой медной проволоки в штативе. К проволоке прикрепим воском несколько гвоздиков (рис. 6). При нагревании свободного конца проволоки в пламени спиртовки воск будет таять. Гвоздики начнут постепенно отваливаться. Сначала отпадут те, которые расположены ближе к пламени, затем по очереди все остальные. Выясним, как происходит передача энергии по проволоке. Скорость колебательного движения частиц металла увеличивается в той части проволоки, которая ближе расположена к пламени. Поскольку частицы постоянно взаимодействуют друг с другом, то увеличивается скорость движения соседних частиц. Начинает повышаться температура следующей части проволоки и т. д. Следует помнить, что при теплопроводности не происходит переноса вещества от одного конца тела к другому. Рассмотрим теперь теплопроводность жидкостей. Возьмем пробирку с водой и станем нагревать ее верхнюю часть. Вода у поверхности скоро закипит, а у дна пробирки за это время она только нагреется (рис. 7). Значит, у жидкостей теплопроводность невелика, за исключением ртути и расплавленных металлов. Это объясняется тем, что в жидкостях молекулы расположены на больших расстояниях друг от друга, чем в твердых телах. Исследуем теплопроводность газов.
Сухую пробирку наденем на палец и нагреем в пламени спиртовки донышком вверх (рис. 8). Палец при этом долго не почувствует тепла. Это связано с тем, что расстояние между молекулами газа еще больше, чем у жидкостей и твердых тел. Следовательно, теплопроводность у газов еще меньше. Итак, теплопроводность у различных веществ различна. Опыт, изображенный на рисунке 9, показывает, что теплопроводность у различных металлов неодинакова. Плохой теплопроводностью обладают шерсть, волосы, перья птиц, бумага, пробка и другие пористые тела. Это связано с тем, что между волокнами этих веществ содержится воздух. Самой низкой теплопроводностью обладает вакуум (освобожденное от воздуха пространство).
Объясняется это тем, что теплопроводность — это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц.
В пространстве, где нет частиц, теплопроводность осуществляться не может. Если возникает необходимость предохранить тело от охлаждения или нагревания, то применяют вещества с малой теплопроводностью. Так, для кастрюль, сковородок ручки изготавливают из пластмассы. Дома строят из бревен или кирпича, обладающих плохой теплопроводностью, а значит, предохраняют помещения от охлаждения.
Строительные и изоляционные материалы «4 Стихии» в Александрове на СКИДКОМ.РФ
Строительные и изоляционные материалы «4 Стихии» в Александрове
Ищете где купить изоляционные и строительные материалы для технической изоляции, огнезащиты строительных конструкций или термозащиты? Не знаете какая компания в Александрове продаёт качественные материалы по выгодным ценам? Советуем вам обратиться в компанию «4 Стихии»! Материалы для термозащиты, звукоизоляции и даже гидроизоляции — это то, чем мы занимаемся на протяжении долгих лет и предоставляем нашим клиентам большой выбор изоляционных и строительных материалов по низким ценам, гарантируя 100% качество предоставленных товаров. Если вы не знаете какой товар из ассортимента подойдёт для Вас, то наши квалифицированные специалисты помогут в данном вопросе и подберут нужный товар для Вас. За огромным ассортиментом высококачественных строительных и изоляционных материалов обращайтесь только в компанию «4 Стихии»!
Каталог товаров компании 4 Стихии
Антисептические средства
Антисептики для древесины
Антисептики для бетона
Что такое изоляционные материалы?
На сегодняшний день изоляционные материалы находят широкое применение в строительстве и ремонте. Основные виды изоляционных материалов: теплоизоляция, звукоизоляция, гидроизоляция, термозащита. Теплоизоляционные материалы — строительные материалы, применяемые для теплоизоляции строительных конструкций жилых, производственных зданий, поверхностей оборудования и промышленных агрегатов, средств транспорта. Эти материалы обладают малой теплопроводностью и позволяют снизить потери теплоты, сохранить необходимый температурный режим, снизить расход топлива, а в строительстве — уменьшить толщину стен, кровли, тем самым уменьшить расход строительных материалов и вес конструкции.
Огнебиозащита
для древесины
Огнезащитные пропитки
для тканей
Защита и тонирование
древесины
Преимущества компании «4 Стихии»
Сотрудничая с нашей компанией, Вы можете быть уверены в качестве и надежности предлагаемой продукции!
Мы гарантируем нашим клиентам профессиональные консультации и самое качественное обслуживание.
- Широкий ассортимент. Большой выбор высокоэффективных материалов — широкого спектра применения.
- Прямые поставки. Прямые договора с заводами-изготовителями — изоляционных материалов.
- Гарантия качества. Гарантированное качество всей продукции. Вся продукция сертифицирована.
- Оптимальные цены. Максимально выгодные цены на все виды покрытий. Скидки и акции.
- Профессиональные консультации. Опытные квалифицированные специалисты ответят на все интересующие Вас вопросы.
- Скидки и акции. Широкая и гибкая система скидок для — постоянных клиентов компании.
- Удобная оплата. Возможность оплаты товара удобными способами: наличными или на расчетный счет.
- Оперативная доставка. Быстрая и удобная доставка ваших заказов по всей территории Российской Федерации.
Закажите обратный звонок, и мы обязательно с вами свяжемся!
Почему стоит покупать изоляционные материалы в компании «4 Стихии»?
- Мы предлагаем нашим клиентам широкий выбор изоляционных материалов, которые доказали свою надежность и проверены временем. Сотрудники нашей компании готовы предоставить Вам полную информацию о интересующем Вас товар, помогут подобрать аналогичные материалы, просчитают доставку до Вашего объекта.
- Не секрет, что на многих объектах одним из важных факторов при выборе поставщика изоляционных материалов является стабильность и скорость поставок при оптимальной цене. Именно поэтому одним из важнейших факторов, которому мы уделяем особое внимание — это оперативность отгрузки и лояльность для всех наших заказчиков. На данный момент существует широкая система скидок и постоянные клиенты всегда могут рассчитывать индивидуальное отношение и ценовую политику.
- Мы ценим нашу репутацию качественного и удобного поставщика, и уверены, что главное условие успешной работы и роста любой компании — ответственность перед Клиентом.
- Компания «4 Стихии» всегда рада предложить Вам сотрудничество и взаимовыгодные условия. Мы рады новыми поставщиками и всегда открыты для Ваших предложений и пожеланий!
Купите изоляционные и строительные материалы в Александрове в компании «4 Стихии»- гарантируем качественную и оперативную работу! Любые подробности по телефону.
Телефон: +7(4922)60-02-37 +7(930)838-87-97
Пожалуйста, скажите, что узнали номер на СКИДКОМ
Показать телефон
Все для ремонта квартиры. Статьи материалы для ремонта квартиры
Все для ремонта квартиры. Статьи материалы для ремонта квартиры
На нашем сайте VK ремонт собраны полезные статьи про ремонт квартиры своими руками и другая информация. Из статей о ремонте вы можете узнать свойства и характеристики каждого взято отдельного типа материала, как их правильно выбирать и работать с ними своими руками.
Наверное, вы согласитесь, что без качественных строительно-отделочных материалов современный ремонт квартиры сделать невозможно! Не так ли? Различные декоративные и ремонтные материалы позволяют быстро сделать качественный ремонт и произвести финишную отделку комнат квартиры своими руками. После их использования создается более уютная атмосфера и дом становится еще комфортней. После применения материалов квартира приобретет эстетичный вид. Современный товар на строительных рынках позволяет обновить в новую одежду и освежить красками и блеском новизны любую комнату в квартире. Некоторые материалы и специальное оборудование могут защитить проживающих от вредных грибка и плесени. Чтобы вы имели представление вот самые распространенные строительно отделочные материалы применяемые в ходе ремонта квартиры и ванной комнаты :
Например, отделочные и декоративные материалы: стеновые и напольные панели, кафельная и керамическая плитки, плитка из камня, различные напольные покрытия (паркет, ламинат и виниловая напольная плитка), обои бывают флизелиновые и бумажные (каменные), краска существует водоэмульсионная, нитро и т. п. и т. д. Эти отделочные материалы предназначены для отделки поверхностей стен, потолка и пола в комнатах квартиры.
Так же на нашем сайте VK ремонт из статей вы узнаете как сделать новый пол, стены и потолок в квартире своими силами. Вы научитесь монтировать самостоятельно любое новое покытие пола, стен или потолка. Сегодня довольно большой популярностью пользуются напольные покрытия для квартир : линолеум, паркет , ламинат , пробка, кафельная плитка , ковролин, искусственный камень и другие.
Материалы используемые при ремонте помещений
Гипсовые и цементные штукатурки , сухие и готовые шпаклевки используются для выравнивания поверхностей. Акриловые и силиконовые герметики применяются для герметизации стыков — уплотнения швов. Разнообразные грунтовки имеют назначение адгезии (лучшего сцепления). Клеи ПВА, для резины, жидкие гвозди, сухая сварка — помогут что-то склеить быстро и качественно. Сухие строительные смеси и мокрые — без них не обойтись на строительной площадке. Различные пиломатериалы (бруски, вагонка, доски) могут послужить для создания деревянных конструкций (обрешотки) или облицовки стен. Укрепительные и армирующие сетки, цементные пеноблоки, кирпич, гипсокартон и пр помогут соорудить перегородку. Некоторые из строительно-отделочных материалов выполняют роль скрепления (фиксации), другие выравнивания или исправления дефектов поверхностей, их изменения или защиты.
Строительные материалы. Классификация и основные свойства строительных материалов
К основным строительным материалам относятся: природные (естественные) каменные материалы, неорганические и органические вяжущие материалы, бетон, железобетон и конструкции из него, строительные растворы, искусственные каменные материалы (обжиговые и безобжиговые), лесные материалы, металлы, материалы и изделия на основе пластических масс, теплоизоляционные и звукоизоляционные материалы, кровельные и гидроизоляционные материалы, лакокрасочные материалы.
Большинство строительных материалов имеет общие свойства: средняя плотность, удельный вес, удельный объем, объемная масса, пористость, влажность, водопоглощаемость, водопроницаемость, теплопроводность, огнестойкость, морозостойкость, прочность, твердость, звукопроводность, химическую стойкость.
Средней плотностью вещества называют отношение массы вещества к занимаемому им объему (кг/м3).
где m – масса вещества, кг,
V – объем, занимаемый веществом, включая имеющиеся в нем пустоты и поры, м3.
Пористостью называют отношение объема пор к общему объему материала. У строительных материалов пористость может иметь величину от 0 (сталь) – до 90% (плиты из минеральной ваты).
По мере увеличения пористости строительных материалов возрастают влагопоглощение, водопроницаемость, уменьшаются теплопроводность, морозостойкость, прочность, химическая стойкость и т. д.
Влажность материала определяют по содержанию в нем воды.
Водопоглощаемостью материала называют его способность впитывать и удерживать воду. Водопоглощаемость определяют по разности масс образцов материалов насыщенного водой и сухого и выражают в процентах.
Водопроницаемость – это способность материала пропускать воду при наличии гидростатического давления. Степень водонепроницаемости материалов зависит от их плотности и строения.
Теплопроводностью называют способность материала передавать тепло через толщу от одной своей поверхности к другой.
Теплопроводность материала выражается через коэффициент. При увеличении пористости и уменьшении объема материала снижается коэффициент теплопроводности. Материал с малой теплопроводностью называют теплоизоляционным материалом. За единицу теплопроводности в системе СИ принята – Вт/(мºС). Ранее применялась 1 ккал/(ч·мºС) приблизительно равна 1,16 Вт/(мºС).
Огнестойкостью называют способность материалов сохранять свою прочность под действием огня. По степени сгорания строительные материалы разделяют на несгораемые, трудносгораемые и сгораемые. В строительных нормах и правилах (СНиП П-2-80) указана степень возгораемости основных строительных материалов и конструкций.
Морозостойкостью называют способность материала сопротивляться разрушающему действию воды, замерзшей в его порах. Нормами установлено число повторных замораживаний, которое должен выдержать без разрушения материал, насыщенный водой. От морозостойкости материала зависит долговечность многих элементов зданий.
Прочностью называют свойство материала сопротивляться разрушению под действием напряжений, возникающих от нагрузки или других факторов. Изучением прочности материалов занимается наука – сопротивление материалов.
Строительные материалы в конструкциях под различными нагрузками чаще всего испытывают напряжения сжатия и растяжения, реже – изгиба, среза и удара.
Прочность строительных материалов характеризуется пределом прочности при сжатии или при растяжении, паскаль, Па:
где Рр – разрушающая нагрузка,
S – площадь поперечного сечения образца (первоначальная).
Предел прочности при сжатии для большинства материалов определяется маркой.
Твердость – есть способность материала сопротивляться проникновению в него другого более твердого тела. Твердость материала не всегда соответствует его прочности.
Звукопроводностью называют распространение звуковых волн по материалам конструкций. Большой звукопроводностью обладают тяжелые и плотные материалы, малой — пористые и легкие.
Звукопроницаемостью называют распространение звуковых волн от источника звука по воздуху, проникающих через ограждающие конструкции здания. Большой звукопроницаемостью обладают легкие и пористые материалы, а малой — тяжелые.
Химическая стойкость — это сопротивление строительных материалов действию химических реагентов. Она зависит от химического и минералогического состава материала, его структуры и плотности, а также от характера агрессивной среды и ее концентрации, температуры, интенсивности поступления и давления.
Товары для строительства и ремонта. Стройматериалы интернет магазин Мега Строй Маркета. Все для строительства и ремонта.
Предлагаем вам ознакомиться с кратким путеводителем по нашему интернет магазину стройматериалов с доставкой Мега Строй Маркет «Все для строительства и ремонта». Вы сможете задержаться в любом из отделов, который вас заинтересует, но для начала обозначим основной маршрут.
Что можно узнать?
Если вы уверены, что знаете о строительстве и ремонте все или почти все, то мы вынуждены вас разочаровать. Ознакомьтесь с нашими категориями, и наверняка, вы найдете для себя массу новой, интересной и главное – полезной информации, подкрепленной конкретными данными. Наш интернет магазин Мега Строй Маркет рассчитан не только на компании, специализирующиеся на строительстве и ремонте. Любой, кто интересуется этой сферой, сможет расширить свои познания и стать теоретически подкованным заказчиком, который будет общаться с подрядчиками на совершенно другом уровне. Если вы планируете ремонт в квартире или строительство загородного дома, то вы получите объективную и проверенную на практике информацию о наиболее востребованных технологиях и новых материалах.
Главная цель нашего интернет магазина стройматериалов – это составление самого полного каталога и оптимизация всего процесса, от покупки до доставки выбранных вами товаров. Наш каталог регулярно пополняется новыми материалами для строительства и ремонта, которые только появились на рынке. Это современные строительные материалы и отделочные материалы от ведущих производителей. Мы не планировали создавать очередной интернет магазин по продаже материалов для строительства, ремонта и отделки. Вы сейчас находитесь в действующем сетевом мега-маркете, где сможете найти все необходимое, не выходя из дома. Вам не нужно тратить время на походы по рынкам или специализированным магазинам – покупка стройматериалов займет у вас ровно пять минут!
В чем преимущества?
- Полная информация по всем темам, касающимся строительства и ремонта, и огромный каталог стройматериалов, объединивший в себе все существующие категории.
- Возможность посещать наш Мега Строй Маркет в любое удобное для вас время, находясь дома или в офисе. Вы за считанные минуты найдете интересующие вас отделочные или стройматериалы, но вам не нужно будет брать первое, что вам предложат. Изучайте, сравнивайте и выбирайте!
- Доступные цены. Это принципиальное преимущество, когда намечается строительство или капитальный ремонт, требующий закупки большого количества стройматериалов и сопутствующих товаров. Для нас демократичные цены – это не синоним сомнительного качества, а продуманная ценовая политика в расчете на разные категории клиентов.
- Быстрая доставка стройматериалов, адекватная цена, а главное возможность оплаты выбранного вами товара при его получении, что во многих случаях может оказаться оптимальным решением для вас. Мы доставим стройматериалы в минимальный срок, чтобы работающие у вас мастера могли следовать графику без простоев.
- Четкость в работе и внимание к клиенту. Для нас это не просто слова, а главные принципы нашей работы. Если вы хотя бы раз общались с продавцами стройматериалов, то перечеркните этот опыт и начните общаться с людьми, которые ставят во главу угла эталонный уровень сервисных услуг и человеческий подход.
Теплопроводность — выбранные материалы и газы
Теплопроводность — это свойство материала, которое описывает способность проводить тепло. Теплопроводность может быть определена как
«количество тепла, передаваемого через единицу толщины материала в направлении, нормальном к поверхности единицы площади, за счет градиента единичной температуры в условиях устойчивого состояния»
Теплопроводность единицами являются [Вт / (м · К)] в системе СИ и [БТЕ / (час фут ° F)] в британской системе мер.
См. Также изменения теплопроводности в зависимости от температуры и давления , для: воздуха, аммиака, двуокиси углерода и воды
Теплопроводность для обычных материалов и продуктов:
Теплопроводность — k — Вт / (м · К) | ||||||||
---|---|---|---|---|---|---|---|---|
Материал / вещество | Температура | |||||||
25 o C (77 o F) | 125 o C (257 o F) | 225 o C (437 o F) | ||||||
Acetals | 0.23 | |||||||
Ацетон | 0,16 | |||||||
Ацетилен (газ) | 0,018 | |||||||
Акрил | 0,2 | |||||||
Воздух, атмосфера (газ) | 0,0262 | 0,0333 | 0,0398 | |||||
Воздух, высота над уровнем моря 10000 м | 0,020 | |||||||
Агат | 10,9 | |||||||
Спирт | 0.17 | |||||||
Глинозем | 36 | 26 | ||||||
Алюминий | ||||||||
Алюминий Латунь | 121 | |||||||
Оксид алюминия | 30 | |||||||
Аммиак (газ) | 0,0249 | 0,0369 | 0,0528 | |||||
Сурьма | 18,5 | |||||||
Яблоко (85.6% влаги) | 0,39 | |||||||
Аргон (газ) | 0,016 | |||||||
Асбестоцементная плита 1) | 0,744 | |||||||
Асбестоцементные листы 1) | 0,166 | |||||||
Асбестоцемент 1) | 2,07 | |||||||
Асбест в рыхлой упаковке 1) | 0.15 | |||||||
Асбестовая плита 1) | 0,14 | |||||||
Асфальт | 0,75 | |||||||
Бальсовое дерево | 0,048 | |||||||
Битум | 0,14 | |||||||
Слои битума / войлока | 0,5 | |||||||
Говядина постная (влажность 78,9%) | 0.43 — 0,48 | |||||||
Бензол | 0,16 | |||||||
Бериллий | ||||||||
Висмут | 8,1 | |||||||
Битум | 0,17 | |||||||
Доменный газ (газ) | 0,02 | |||||||
Шкала котла | 1,2 — 3,5 | |||||||
Бор | 25 | |||||||
Латунь | ||||||||
Бризовый блок | 0.10 — 0,20 | |||||||
Кирпич плотный | 1,31 | |||||||
Кирпич огневой | 0,47 | |||||||
Кирпич изоляционный | 0,15 | |||||||
Кирпич обыкновенный (Строительный кирпич ) | 0,6 -1,0 | |||||||
Кирпичная кладка плотная | 1,6 | |||||||
Бром (газ) | 0,004 | |||||||
Бронза | ||||||||
Коричневая железная руда | 0.58 | |||||||
Масло (влажность 15%) | 0,20 | |||||||
Кадмий | ||||||||
Силикат кальция | 0,05 | |||||||
Углерод | 1,7 | |||||||
Двуокись углерода (газ) | 0,0146 | |||||||
Окись углерода | 0,0232 | |||||||
Чугун | ||||||||
Целлюлоза, хлопок, древесная масса и регенерированная | 0.23 | |||||||
Ацетат целлюлозы, формованный, лист | 0,17 — 0,33 | |||||||
Нитрат целлюлозы, целлулоид | 0,12 — 0,21 | |||||||
Цемент, Портленд | 0,29 | |||||||
Цемент, строительный раствор | 1,73 | |||||||
Керамические материалы | ||||||||
Мел | 0.09 | |||||||
Древесный уголь | 0,084 | |||||||
Хлорированный полиэфир | 0,13 | |||||||
Хлор (газ) | 0,0081 | |||||||
Хром никелевая сталь | 16,3 | |||||||
Хром | ||||||||
Оксид хрома | 0,42 | |||||||
Глина, от сухой до влажной | 0.15 — 1,8 | |||||||
Глина насыщенная | 0,6 — 2,5 | |||||||
Уголь | 0,2 | |||||||
Кобальт | ||||||||
Треск (влажность 83% содержание) | 0,54 | |||||||
Кокс | 0,184 | |||||||
Бетон, легкий | 0,1 — 0,3 | |||||||
Бетон, средний | 0.4 — 0,7 | |||||||
Бетон, плотный | 1,0 — 1,8 | |||||||
Бетон, камень | 1,7 | |||||||
Константан | 23,3 | |||||||
Медь | ||||||||
Кориан (керамический наполнитель) | 1,06 | |||||||
Пробковая плита | 0,043 | |||||||
Пробка, повторно гранулированная | 0.044 | |||||||
Пробка | 0,07 | |||||||
Хлопок | 0,04 | |||||||
Вата | 0,029 | |||||||
Углеродистая сталь | ||||||||
Утеплитель из шерсти | 0,029 | |||||||
Купроникель 30% | 30 | |||||||
Алмаз | 1000 | |||||||
Диатомовая земля (Sil-o-cel) | 0.06 | |||||||
Диатомит | 0,12 | |||||||
Дуралий | ||||||||
Земля, сухая | 1,5 | |||||||
Эбонит | 0,17 | 11,6 | ||||||
Моторное масло | 0,15 | |||||||
Этан (газ) | 0.018 | |||||||
Эфир | 0,14 | |||||||
Этилен (газ) | 0,017 | |||||||
Эпоксидный | 0,35 | |||||||
Этиленгликоль | 0,25 | Перья | 0,034 | |||||
Войлок | 0,04 | |||||||
Стекловолокно | 0.04 | |||||||
Волокнистая изоляционная плита | 0,048 | |||||||
Древесноволокнистая плита | 0,2 | |||||||
Огнеупорный кирпич 500 o C | 1,4 | |||||||
Фтор (газ) | 0,0254 | |||||||
Пеностекло | 0,045 | |||||||
Дихлордифторметан R-12 (газ) | 0.007 | |||||||
Дихлордифторметан R-12 (жидкость) | 0,09 | |||||||
Бензин | 0,15 | |||||||
Стекло | 1.05 | |||||||
Стекло, жемчуг, жемчуг | 0,18 | |||||||
Стекло, жемчуг, насыщенное | 0,76 | |||||||
Стекло, окно | 0.96 | |||||||
Стекло-вата Изоляция | 0,04 | |||||||
Глицерин | 0,28 | |||||||
Золото | ||||||||
Гранит | 1,7 — 4,0 | |||||||
Графит | 168 | |||||||
Гравий | 0,7 | |||||||
Земля или почва, очень влажная зона | 1.4 | |||||||
Земля или почва, влажная зона | 1,0 | |||||||
Земля или почва, сухая зона | 0,5 | |||||||
Земля или почва, очень сухая зона | 0,33 | |||||||
Гипсокартон | 0,17 | |||||||
Волос | 0,05 | |||||||
ДВП высокой плотности | 0.15 | |||||||
Лиственные породы (дуб, клен ..) | 0,16 | |||||||
Hastelloy C | 12 | |||||||
Гелий (газ) | 0,142 | |||||||
Мед ( 12,6% влажности) | 0,5 | |||||||
Соляная кислота (газ) | 0,013 | |||||||
Водород (газ) | 0,168 | |||||||
Сероводород (газ) | 0.013 | |||||||
Лед (0 o C, 32 o F) | 2,18 | |||||||
Инконель | 15 | |||||||
Чугун | 47-58 | |||||||
Изоляционные материалы | 0,035 — 0,16 | |||||||
Йод | 0,44 | |||||||
Иридий | 147 | |||||||
Железо | ||||||||
Оксид железа | 0 .58 | |||||||
Капок изоляция | 0,034 | |||||||
Керосин | 0,15 | |||||||
Криптон (газ) | 0,0088 | |||||||
Свинец | ||||||||
, сухой | 0,14 | |||||||
Известняк | 1,26 — 1,33 | |||||||
Литий | ||||||||
Магнезиальная изоляция (85%) | 0.07 | |||||||
Магнезит | 4,15 | |||||||
Магний | ||||||||
Магниевый сплав | 70-145 | |||||||
Мрамор | 2,08 — 2,94 | |||||||
Ртуть, жидкость | ||||||||
Метан (газ) | 0,030 | |||||||
Метанол | 0.21 | |||||||
Слюда | 0,71 | |||||||
Молоко | 0,53 | |||||||
Изоляционные материалы из минеральной ваты, шерстяные одеяла .. | 0,04 | |||||||
Молибден | ||||||||
Монель | ||||||||
Неон (газ) | 0,046 | |||||||
Неопрен | 0.05 | |||||||
Никель | ||||||||
Оксид азота (газ) | 0,0238 | |||||||
Азот (газ) | 0,024 | |||||||
Закись азота (газ) | 0,0151 | |||||||
Нейлон 6, Нейлон 6/6 | 0,25 | |||||||
Масло машинное смазочное SAE 50 | 0,15 | |||||||
Оливковое масло | 0.17 | |||||||
Кислород (газ) | 0,024 | |||||||
Палладий | 70,9 | |||||||
Бумага | 0,05 | |||||||
Парафиновый воск | 0,25 | Торф | 0,08 | |||||
Перлит, атмосферное давление | 0,031 | |||||||
Перлит, вакуум | 0.00137 | |||||||
Фенольные литые смолы | 0,15 | |||||||
Формовочные смеси фенолформальдегид | 0,13 — 0,25 | |||||||
Фосфорбронза | 110 | Pinchbe20 159 | ||||||
Шаг | 0,13 | |||||||
Карьерный уголь | 0.24 | |||||||
Гипс светлый | 0,2 | |||||||
Гипс, металлическая планка | 0,47 | |||||||
Гипс песочный | 0,71 | |||||||
Гипс, деревянная планка | 0,28 | |||||||
Пластилин | 0,65 — 0,8 | |||||||
Пластмассы вспененные (изоляционные материалы) | 0.03 | |||||||
Платина | ||||||||
Плутоний | ||||||||
Фанера | 0,13 | |||||||
Поликарбонат | 0,19 | |||||||
Полиэстер | ||||||||
Полиэтилен низкой плотности, PEL | 0,33 | |||||||
Полиэтилен высокой плотности, PEH | 0.42 — 0,51 | |||||||
Полиизопреновый каучук | 0,13 | |||||||
Полиизопреновый каучук | 0,16 | |||||||
Полиметилметакрилат | 0,17 — 0,25 | Полипропилен | ||||||
Полистирол вспененный | 0,03 | |||||||
Полистирол | 0.043 | |||||||
Пенополиуритан | 0,03 | |||||||
Фарфор | 1,5 | |||||||
Калий | 1 | |||||||
Картофель, сырое мясо | 0,55 | |||||||
Пропан (газ) | 0,015 | |||||||
Политетрафторэтилен (ПТФЭ) | 0,25 | |||||||
Поливинилхлорид, ПВХ | 0.19 | |||||||
Стекло Pyrex | 1,005 | |||||||
Кварц минеральный | 3 | |||||||
Радон (газ) | 0,0033 | |||||||
Красный металл | ||||||||
Рений | ||||||||
Родий | ||||||||
Порода, твердая | 2-7 | |||||||
Порода, вулканическая порода (туф) | 0.5 — 2,5 | |||||||
Изоляция из каменной ваты | 0,045 | |||||||
Канифоль | 0,32 | |||||||
Резина, ячеистая | 0,045 | |||||||
Резина натуральная | 0,13 | |||||||
Рубидий | ||||||||
Лосось (влажность 73%) | 0,50 | |||||||
Песок сухой | 0.15 — 0,25 | |||||||
Песок влажный | 0,25 — 2 | |||||||
Песок насыщенный | 2-4 | |||||||
Песчаник | 1,7 | |||||||
Опилки | 0,08 | |||||||
Селен | ||||||||
Овечья шерсть | 0,039 | |||||||
Аэрогель кремнезема | 0.02 | |||||||
Кремниевая литьевая смола | 0,15 — 0,32 | |||||||
Карбид кремния | 120 | |||||||
Кремниевое масло | 0,1 | |||||||
Серебро | ||||||||
Шлаковая вата | 0,042 | |||||||
Сланец | 2,01 | |||||||
Снег (температура <0 o C) | 0.05 — 0,25 | |||||||
Натрий | ||||||||
Хвойные породы (пихта, сосна ..) | 0,12 | |||||||
Почва, глина | 1,1 | |||||||
Почва, с органическими вещество | 0,15 — 2 | |||||||
Грунт насыщенный | 0,6 — 4 | |||||||
Припой 50-50 | 50 | |||||||
Сажа | 0.07 | |||||||
Насыщенный пар | 0,0184 | |||||||
Пар низкого давления | 0,0188 | |||||||
Стеатит | 2 | |||||||
Сталь углеродистая | ||||||||
Сталь, нержавеющая сталь | ||||||||
Изоляция из соломенных плит, сжатая | 0,09 | |||||||
Пенополистирол | 0.033 | |||||||
Диоксид серы (газ) | 0,0086 | |||||||
Сера кристаллическая | 0,2 | |||||||
Сахара | 0,087 — 0,22 | |||||||
Тантал | ||||||||
Смола | 0,19 | |||||||
Теллур | 4,9 | |||||||
Торий | ||||||||
Древесина, ольха | 0.17 | |||||||
Лес, ясень | 0,16 | |||||||
Лес, береза | 0,14 | |||||||
Лес, лиственница | 0,12 | |||||||
Лес, клен | 0,16 | |||||||
Древесина дубовая | 0,17 | |||||||
Древесина осина | 0,14 | |||||||
Древесина оспа | 0.19 | |||||||
Древесина, бук красный | 0,14 | |||||||
Древесина, сосна красная | 0,15 | |||||||
Древесина, сосна белая | 0,15 | |||||||
Древесина ореха | 0,15 | |||||||
Олово | ||||||||
Титан | ||||||||
Вольфрам | ||||||||
Уран | ||||||||
Пенополиуретан | 0.021 | |||||||
Вакуум | 0 | |||||||
Гранулы вермикулита | 0,065 | |||||||
Виниловый эфир | 0,25 | |||||||
Вода, пар (пар) | 0,0267 | 0,0359 | ||||||
Пшеничная мука | 0.45 | |||||||
Белый металл | 35-70 | |||||||
Древесина поперек волокон, белая сосна | 0,12 | |||||||
Древесина поперек волокон, бальза | 0,055 | |||||||
Древесина поперек волокон, сосна желтая, древесина | 0,147 | |||||||
Дерево, дуб | 0,17 | |||||||
Шерсть, войлок | 0.07 | |||||||
Древесная вата, плита | 0,1 — 0,15 | |||||||
Ксенон (газ) | 0,0051 | |||||||
Цинк |
1) Асбест плохо для здоровья человека, когда крошечные абразивные волокна попадают в легкие, где они могут повредить легочную ткань. Это, по-видимому, усугубляется курением сигарет, в результате чего возникают мезотелиома и рак легких.
Пример — кондуктивная теплопередача через алюминиевый бак по сравнению с баком из нержавеющей стали
Кондуктивная теплопередача через стенку ванны может быть рассчитана как
q = (k / s) A dT (1)
или, альтернативно,
q / A = (к / с) dT
, где
q = теплопередача (Вт, БТЕ / ч)
A = площадь поверхности (м 2 , фут 2 )
q / A = теплопередача на единицу площади (Вт / м 2 , БТЕ / (ч фут 2 ))
k = теплопроводность ( Вт / мК, БТЕ / (час фут ° F) )
dT = t 1 — t 2 = разница температур ( o C, o F)
с = толщина стены (м, фут)
9000 5
Калькулятор теплопроводности
k = теплопроводность (Вт / мК, БТЕ / (час фут ° F) )
s = толщина стенки (м, фут)
A = площадь поверхности (м 2 , футы 2 )
dT = t 1 — t 2 = разница температур ( o C, o F)
Примечание! — общая теплопередача через поверхность определяется « общим коэффициентом теплопередачи », который в дополнение к кондуктивной теплопередаче зависит от
Кондуктивная теплопередача через алюминиевую стенку емкости толщиной 2 мм — разность температур 80
o C
Теплопроводность алюминия составляет 215 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как
q / A = [(215 Вт / (м · K)) / (2 10 -3 м)] (80 o C)
= 8600000 (Вт / м 2 )
= 8600 (кВт / м 2 )
Кондуктивная теплопередача через стенку емкости из нержавеющей стали толщиной 2 мм — разница температур 80
o C
Теплопроводность для нержавеющей стали 17 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как
q / A = [(17 Вт / (м · K)) / (2 10 -3 м) ] (80 o C)
= 680000 (Вт / м 2 )
= 680 (кВт / м 2 )
Низкая теплопроводность — обзор
Низкая теплопроводность
Тепло — это форма энергии, всегда переходящая от более высокой температуры к более низкой.Низкий показатель теплопроводности жесткого пенополиуретана, один из самых низких показателей среди обычно используемых изоляционных материалов, позволяет эффективно удерживать тепловой поток.
Прочность
Хороший баланс между весом, механической прочностью и изоляционными свойствами пенополиуретана (CORAFOAM®) демонстрирует его универсальность в качестве изоляционного материала. Эти качества позволяют использовать его в приложениях, где требуется изоляция с сочетанием несущих, ударопрочных, весовых и компактных свойств, а также простоты установки и обслуживания.
Этот пенополиуретан обеспечивает очень благоприятное соотношение физико-механических свойств по сравнению с плотностью; Дальнейшее улучшение общих свойств достигается при приклеивании к облицовочным материалам, таким как металл или гипсокартон.
Легкость
Жесткие пенополиуретаны являются ячеистыми материалами. Пена состоит из маленьких пузырьков, наполненных вспенивающим агентом, который обеспечивает хорошие изоляционные свойства. Полиуретановая матрица отвечает за удержание всех ячеек вместе: чем больше количество полимера, удерживающего структуру, тем выше плотность.Фактически, в 1 кубическом метре пены только 4% от общего объема занято полимером, а остальные 96% заполнены вспенивающим агентом (это относится к типичной пене 40–45 кг / м 3 ) Легкость пены позволяет легко транспортировать, обрабатывать и устанавливать.
Низкое водопоглощение и низкая водопроницаемость
Теплопроводность воды в 10-20 раз выше, чем у обычно используемых изоляционных материалов, поэтому очевидно, насколько важно не допускать попадания воды в воду. пакет изоляции.Присутствие воды, помимо потери эффективности изоляции, приводит к увеличению веса, риску коррозии металлических поверхностей и образованию льда всякий раз, когда температура опускается ниже точки замерзания.
В последнем случае возможен риск повреждения изоляционного пакета, что отрицательно скажется на изоляционных свойствах. Закрытая пористая структура жесткого пенополиуретана гарантирует низкое водопоглощение; Тем не менее, предусмотрена установка барьера для паров влаги, чтобы изоляция могла выдерживать самые строгие требования.
Стабильность размеров
Стабильность размеров материала является основным требованием для достижения надлежащих изоляционных характеристик. Изменение размера изоляционного материала может быть обратимым или необратимым: изменение размера из-за простого теплового сжатия / расширения обычно обратимо, в то время как изменение размера из-за комбинированного воздействия экстремальных температур, воды, влаги и механических нагрузок составляет необратимый компонент.
Фактически, все материалы меняют размер при нагревании или охлаждении: величина изменения зависит от химического состава материала.Таким образом, каждый материал имеет свой коэффициент теплового расширения: этот параметр измеряет, насколько материалы сжимаются или расширяются при изменении температуры. Изменения размеров из-за коэффициента теплового расширения обратимы.
Благодаря своему химическому составу, хорошим механическим свойствам, пониженному поглощению влаги, структуре с закрытыми ячейками и химической стойкости жесткие пенополиуретаны демонстрируют значительную стабильность размеров.
Химическая стойкость
Химический состав жесткого пенополиуретана обеспечивает превосходную стойкость к широкому спектру химикатов, растворителей и масел.
Совместимость
Жесткий пенополиуретан совместим с большим количеством вспомогательных материалов, включая бумагу, фольгу, стекловолокно, алюминий и битум. Сочетание жесткого пенополиуретана с этими материалами улучшает общие свойства, позволяя использовать его в качестве полуструктурных панелей и облицовки. Кроме того, правильный выбор штукатурки или фольги улучшает изоляционные свойства пены за счет образования защитных барьеров для влаги, что полезно в условиях высокой влажности.
Диапазон рабочих температур
Жесткий пенополиуретан можно использовать в приложениях, которые испытывают исключительно высокие температуры, от –200 ° C до + 130 ° C. Тем не менее, каждый пенополиуретан имеет свой температурный диапазон применения, поэтому важно дважды проверить указания в технических паспортах, прежде чем выбирать наиболее удобное решение.
Огнестойкость
Жесткие пенополиуретаны представляют собой органические соединения.Все органические вещества являются горючими материалами, хотя воспламеняемость и скорость горения жестких полиуретановых пен могут быть улучшены для соответствия различным изоляционным применениям, а состав пен может быть составлен в соответствии с самыми строгими стандартами противопожарной защиты.
Тепловые свойства неметаллов | Инженеры Edge
Связанные ресурсы: теплопередача
Тепловые свойства неметаллов
Проектирование и проектирование теплообмена
Металлы и материалы в машиностроении
Обзор теплопроводности, теплопередачи
Термические свойства неметаллов
Электропроводность: передача тепла через материалы с низкой теплопроводностью происходит медленнее, чем через материалы с высокой теплопроводностью.Соответственно, материалы с высокой теплопроводностью широко используются в теплоотводах, а материалы с низкой теплопроводностью используются в качестве теплоизоляции. Теплопроводность материала может зависеть от температуры. Величина, обратная теплопроводности, называется удельным тепловым сопротивлением.
Плотность: Плотность или, точнее, объемная массовая плотность вещества — это его масса на единицу объема.
Удельная теплоемкость: тепло, необходимое для повышения температуры единицы массы данного вещества на заданную величину (обычно на один градус).
Материал | Электропроводность | Плотность | Удельная теплоемкость |
АБС-пластик | 0,25 | 1.014 x 10 3 | 1,26 x 10 3 |
Ацетали | 0.3 | 1,42 x 10 3 | 1,5 x 10 3 |
Акрил | 0,06 | 1,19 x 10 3 | 1,5 x 10 3 |
Алкиды | 0,85 | 2,0 x 10 3 | 1.3 х 10 3 |
Глинозем, 96% | 21,0 | 3,8 x 10 3 | 880,0 |
Глинозем чистый | 37,0 | 3,9 x 10 3 | 880,0 |
Асбест, листы асбестовые | 0.166 | – | – |
Асбест, цемент | 2,08 | – | – |
Асбест, цементные плиты | 0,74 | – | – |
Асбест комбинированный, 4 слоя / дюйм | 0.087 | – | – |
Асбест, войлок, 20 лам / дюйм | 0,078 | – | – |
Асбест, войлок, 40 лам / дюйм | 0,057 | – | – |
Асбест в свободной упаковке | 0.154 | 520,0 | – |
Асфальт | 0,75 | – | – |
Бакелит | 0,19 | – | – |
Бальзам шерсть 2,2 фунта / фут 3 | 0.04 | 35,0 | – |
Бериллия, 99,5% | 197,3 | – | – |
Кирпич, Строительный кирпич | 0,69 | 1,6 x 10 3 | – |
Кирпич, Карборундовый кирпич | 18.5 | – | – |
Кирпич, Хромированный кирпич | 2,32 | 3,0 x 10 3 | – |
Кирпич, Кизельгур | 0,24 | – | – |
Кирпич, Лицевой кирпич | 1.32 | 2,0 x 10 3 | – |
Кирпич шамотный | 1.04 | 2,0 x 10 3 | – |
Кирпич, магнезит | 3,81 | – | – |
Углерод | 6.92 | – | – |
Картон, Celotex | 0,048 | – | – |
Картон гофрированный | 0,064 | – | – |
Цемент, Строительный раствор | 1.16 | – | – |
Cement, Портленд | 0,29 | 1,5 x 10 3 | – |
Бетон, Шлак | 0,76 | – | – |
Бетон, Камень 1-2-4 смесь | 1.37 | 2,1 x 10 3 | – |
Пробка, пробковая доска, 10 фунтов / фут 3 | 0,043 | 160,0 | – |
Пробка молотая | 0,043 | 150,0 | – |
Пробка, регранулированная | 0.045 | 80,0 | – |
Diamond, пленка | 700,0 | 3,5 x 10 3 | 2,0 x 10 3 |
Алмаз, тип IIA | 2,0 x 10 3 | – | – |
Алмаз, тип IIB | 1.3 х 10 3 | – | – |
Диатомовая земля | 0,061 | 320,0 | – |
E-Стекловолокно | 0,89 | 2,54 x 10 3 | 820,0 |
Эпоксидная смола с высоким заполнением | 2.163 | – | – |
Эпоксидная смола, без заливки | 0,207 | – | – |
Войлок, Волосы | 0,036 | 265,0 | – |
Войлок, шерсть | 0.052 | 330,0 | – |
Волокнистая изоляционная плита | 0,048 | 240,0 | – |
FR4 Эпоксидное стекло, медь 1 унция | 9,11 | – | – |
FR4 Эпоксидное стекло, 2 унции меди | 17.71 | – | – |
FR4 Эпоксидное стекло, 4 унции меди | 35,15 | – | – |
FR4 Эпоксидное стекло, без меди | 0,294 | 1,9 x 10 3 | 1,15 x 10 3 |
Стекло боросиликатное | 1.09 | 2,2 x 10 3 | – |
Стекло, Pyrex | 1.02 | 2,23 x 10 3 | 837,0 |
Стекло Окно | 0,78 | 2,7 x 10 3 | – |
Стекло, шерсть, 1.5 фунтов / фут 3 | 0,038 | 24,0 | – |
Инсулекс сухой | 0,064 | – | – |
Капок | 0,035 | – | – |
Каптон | 0.156 | – | 1,09 x 10 3 |
Магнезия, 85% | 0,067 | 270,0 | – |
Слюда | 0,71 | – | – |
Майлар | 0.19 | – | – |
Нейлон | 0,242 | 1,1 x 10 3 | 1,7 x 10 3 |
Фенольные, на бумажной основе | 0,277 | – | – |
Фенольный простой | 0.519 | – | – |
Гипс, гипс | 0,48 | 1,44 x 10 3 | – |
Гипс Металлическая планка | 0,47 | – | – |
Штукатурка, рейка | 0.28 | – | – |
Оргстекло | 0,19 | – | – |
Поликарбонат | 0,19 | 1,2 x 10 3 | 1,3 x 10 3 |
Полиэтилен высокой плотности | 0.5 | 950,0 | 2,3 x 10 3 |
Полиэтилен низкой плотности | 0,35 | 920,0 | 2,3 x 10 3 |
Полиэтилен средней плотности | 0,4 | 930,0 | 2.3 х 10 3 |
Полистирол | 0,106 | – | – |
Поливинилхлорид | 0,16 | – | – |
Pyrex | 1,26 | – | – |
Минеральная вата, 10 фунтов / фут 3 | 0.04 | 160,0 | – |
Минеральная вата, насыпная упаковка | 0,067 | 64,0 | – |
Резина бутиловая | 0,26 | – | – |
Твердая резина | 0.19 | – | – |
Резина, силикон | 0,19 | – | – |
Резина, мягкая | 0,14 | – | – |
Опилки | 0.059 | – | – |
S-стекловолокно | 0,9 | 2,49 x 10 3 | 835,0 |
Кремнеземный аэрогель | 0,024 | 140,0 | – |
Кремний, 99.9% | 150,0 | 2,33 x 10 3 | 710,0 |
Силиконовая смазка | 0,21 | – | – |
Камень, гранит | 2,8 | 2,64 x 10 3 | – |
Камень, известняк | 1.3 | 2,5 x 10 3 | – |
Камень, Мрамор | 2,5 | 2,6 x 10 3 | – |
Камень, песчаник | 1,83 | 2,2 x 10 3 | – |
пенополистирол | 0.035 | – | – |
Тефлон | 0,22 | – | 1,04 x 10 3 |
Стружка | 0,059 | – | – |
Дерево, поперечное зерно, бальза, 8.8 фунтов / фут 3 | 0,055 | 140,0 | – |
Дерево, перекрестное зерно, кипарис | 0,097 | 460,0 | – |
Дерево, поперечное зерно, ель | 0,11 | 420,0 | – |
Дерево, поперечное зерно, клен | 0.166 | 540,0 | – |
Дерево, Cross Grain, Дуб | 0,166 | 540,0 | – |
Дерево, Cross Grain, Белая сосна | 0,112 | 430,0 | – |
Дерево, поперечное зерно, желтая сосна | 0.147 | 640,0 | – |
Оксид алюминия, Al 2 O 3, 99,5% | 32,0 | – | – |
Оксид алюминия, Al 2 O 3, 96% | 21,5 | – | – |
Оксид алюминия, Al 2 O 3, 90% | 12.0 | – | – |
Преобразование теплопроводности:
1 кал / см 2 / см / сек / ° C = 10,63 Вт / дюйм — ° C
117 БТЕ / (час-фут F) x (0,293 Вт-час / БТЕ) x (1,8 F / C) x (фут / 12 дюймов) = 5,14 Вт / дюйм — ° C
или
117 БТЕ / (час-фут-фут) x 0,04395 ватт-час-фут-фут / (БТЕ = ° C — дюйм) = 5,14 Вт / дюйм — ° C
Связанный:
© Авторские права 2000-2021, Engineers Edge, LLC www.Engineersedge.com
Все права защищены
Отказ от ответственности
| Обратная связь | Реклама
| Контакты
Дата / Время:
Что такое теплопроводность? Обзор
Вариация теплопроводности
Теплопроводность конкретного материала сильно зависит от ряда факторов. К ним относятся температурный градиент, свойства материала и длина пути, по которому следует тепло.
Теплопроводность окружающих нас материалов существенно различается: от материалов с низкой проводимостью, таких как воздух со значением 0,024 Вт / м • К при 0 ° C, до металлов с высокой проводимостью, таких как медь (385 Вт / м • К).
Теплопроводность материалов определяет то, как мы их используем, например, материалы с низкой теплопроводностью отлично подходят для изоляции наших домов и предприятий, в то время как материалы с высокой теплопроводностью идеально подходят для приложений, где необходимо быстро и эффективно отводить тепло из одной области. к другому, например, в кухонных принадлежностях и системах охлаждения в электронных устройствах.Выбирая материалы с теплопроводностью, подходящей для области применения, мы можем достичь наилучших возможных характеристик.
Теплопроводность и температура
Поскольку движение молекул является основой теплопроводности, температура материала имеет большое влияние на теплопроводность. Молекулы будут двигаться быстрее при более высоких температурах, и поэтому тепло будет передаваться через материал с большей скоростью. Это означает, что теплопроводность одного и того же образца может резко измениться при повышении или понижении температуры.
Способность понимать влияние температуры на теплопроводность имеет решающее значение для обеспечения ожидаемого поведения продуктов при воздействии термического напряжения. Это особенно важно при работе с продуктами, выделяющими тепло, например электроникой, и при разработке материалов для защиты от огня и тепла.
Теплопроводность и структура
Значения теплопроводности существенно различаются в зависимости от материала и сильно зависят от структуры каждого конкретного материала.Некоторые материалы будут иметь разные значения теплопроводности в зависимости от направления распространения тепла; это анизотропные материалы. В этих случаях тепло легче перемещается в определенном направлении из-за того, как устроена конструкция.
При обсуждении тенденций теплопроводности материалы можно разделить на три категории; газы, неметаллические твердые тела и металлические твердые тела. Различия в способностях этих трех категорий к теплопередаче можно объяснить различиями в их структурах и молекулярных движениях.
Газы имеют более низкую относительную теплопроводность, поскольку их молекулы не так плотно упакованы, как в твердых телах, и поэтому теплопередача сильно зависит от свободного движения молекул и скорости молекул.
Газы — плохие передатчики тепла. Напротив, молекулы в неметаллических твердых телах связаны в сетку решетки, и поэтому теплопроводность в основном происходит за счет колебаний в этих решетках. Непосредственная близость этих молекул по сравнению с молекулами газов означает, что неметаллические твердые тела имеют более высокую теплопроводность по сравнению с двумя, однако в этой группе есть большие различия.
Это изменение частично объясняется количеством воздуха, присутствующего в твердом теле, материалы с большим количеством воздушных карманов являются отличными изоляторами, тогда как те, которые более плотно упакованы, будут иметь более высокое значение теплопроводности.
Теплопроводность металлических твердых тел еще раз отличается от предыдущих примеров. Металлы обладают самой высокой теплопроводностью среди любых материалов, за исключением графена, и обладают уникальной комбинацией теплопроводности и электропроводности.Оба эти атрибута передаются одними и теми же молекулами, и связь между ними объясняется законом Видемана-Франца. Этот закон свидетельствует о том, что при определенной температуре электропроводность будет пропорциональна теплопроводности, однако по мере увеличения температуры теплопроводность материала будет расти, а электропроводность — уменьшаться.
Тестирование и измерение теплопроводности
Теплопроводность — важнейший компонент взаимоотношений между материалами, и способность понимать это позволяет нам добиться наилучших характеристик материалов, которые мы используем во всех аспектах нашей жизни.Эффективное испытание и измерение теплопроводности имеют решающее значение для этих усилий. Методы измерения теплопроводности можно разделить на установившиеся или переходные. Это разграничение является определяющей характеристикой того, как работает каждый метод. Методы установившегося состояния требуют, чтобы образец и образец сравнения находились в тепловом равновесии до начала измерений. Для переходных методов это правило не требуется, поэтому результаты выдаются быстрее.
Исследования
Получение пористой муллитовой керамики с низкой теплопроводностью
В этом исследовании анализируется муллитная керамика, образованная в результате вспенивания и отверждения крахмала муллитового порошка, а также то, как ее теплопроводность изменяется с пористостью керамики.Теплопроводность измерялась методом источника переходной плоскости Hot Disc (TPS) с TPS 2500 S. По мере увеличения пористости муллитовой керамики увеличивается и теплопроводность.
Материал с фазовым переходом нанографит / парафин с высокой теплопроводностью
Композиты нанографит (НГ) / парафин были приготовлены в качестве композитных материалов с фазовым переходом. Добавление NG увеличило теплопроводность композитного материала. Материал, содержащий 10% NG, имел теплопроводность 0.9362 Вт / м • K
Каталожные номера:
Нейв Р. Гиперфизика. «Теплопроводность». Государственный университет Джорджии.
Доступно по адресу: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thercond.html#c1
Материалы курса по неразрушающему контролю. «Теплопроводность». Ресурсный центр по неразрушающему контролю.
Доступно по адресу: https://www.ndeed.org/EducationResources/CommunityCollege/Materials/Physical_Chemical/ThermalConductivity.htm
Уильямс, М. «Что такое теплопроводность?». Phys.Org. 9 декабря 2014 г.
Доступно по адресу: http://phys.org/news/2014-12-what-is-heat-conduction.html
Что вы подразумеваете под теплопроводностью? Получено из определения теплопроводности
Thermtest База данных термических свойств материалов. Список теплопроводностей
10 лучших теплопроводных материалов
Теплопроводность — это мера способности материалов пропускать через себя тепло. Материалы с высокой теплопроводностью могут эффективно передавать тепло и легко забирать тепло из окружающей среды.Плохие теплопроводники сопротивляются тепловому потоку и медленно извлекают тепло из окружающей среды. Теплопроводность материала измеряется в ваттах на метр на градус Кельвина (Вт / м • К) в соответствии с рекомендациями S.I (Международная система).
10 лучших измеряемых теплопроводных материалов и их значения приведены ниже. Эти значения проводимости являются средними из-за разницы в теплопроводности в зависимости от используемого оборудования и среды, в которой были получены измерения.
Теплопроводящие материалы
Diamond — 2000 — 2200 Вт / м • K
Алмаз является ведущим теплопроводным материалом и имеет измеренные значения проводимости в 5 раз выше, чем у меди, самого производимого металла в Соединенных Штатах. Атомы алмаза состоят из простой углеродной основы, которая представляет собой идеальную молекулярную структуру для эффективной передачи тепла. Часто материалы с простейшим химическим составом и молекулярной структурой имеют самые высокие значения теплопроводности.
Diamond — важный компонент многих современных портативных электронных устройств. Их роль в электронике — способствовать рассеиванию тепла и защищать чувствительные части компьютера. Высокая теплопроводность алмазов также оказывается полезной при определении подлинности камней в ювелирных изделиях. Добавление небольшого количества алмаза в инструменты и технологии может сильно повлиять на свойства теплопроводности.
Серебро — 429 Вт / м • K
Серебро — относительно недорогой и распространенный теплопроводник.Серебро входит в состав многих бытовых приборов и является одним из самых универсальных металлов из-за его ковкости. 35% серебра, производимого в США, используется для производства электрических инструментов и электроники (US Geological Survey Mineral Community 2013). Вспомогательный продукт серебра, серебряная паста, пользуется все большим спросом из-за его использования в экологически чистых источниках энергии. Серебряная паста используется в производстве фотоэлементов, которые являются основным компонентом солнечных батарей.
Медь — 398 Вт / м • K
Медь — наиболее часто используемый металл для производства токопроводящих приборов в США.Медь имеет высокую температуру плавления и умеренную скорость коррозии. Это также очень эффективный металл для минимизации потерь энергии при передаче тепла. Металлические кастрюли, трубы для горячей воды и автомобильные радиаторы — все это приборы, в которых используются проводящие свойства меди.
Золото — 315 Вт / м • K
Золото — редкий и дорогой металл, который используется в особых проводящих целях. В отличие от серебра и меди, золото редко тускнеет и может выдерживать большие количества коррозии.
Карбид кремния — 270 Вт / м • K
Карбид кремния — это полупроводник, состоящий из сбалансированной смеси атомов кремния и углерода. При изготовлении и сплавлении кремний и углерод соединяются, образуя чрезвычайно твердый и прочный материал. Эта смесь часто используется в качестве компонента автомобильных тормозов, турбинных машин и стальных смесей.
Оксид бериллия– 255 Вт / м • K
Оксид бериллия используется во многих высокопроизводительных деталях для таких приложений, как электроника, поскольку он обладает высокой теплопроводностью и является хорошим электрическим изолятором.
Алюминий — 247 Вт / м • K
Алюминий обычно используется в качестве экономичной замены меди. Хотя алюминий не такой проводящий, как медь, его много, и с ним легко манипулировать из-за его низкой температуры плавления. Алюминий является важным компонентом светильников L.E.D (светоизлучающих диодов). Медно-алюминиевые смеси набирают популярность, поскольку они могут использовать свойства как меди, так и алюминия и могут производиться с меньшими затратами.
Вольфрам — 173 Вт / м • K
Вольфрам имеет высокую температуру плавления и низкое давление пара, что делает его идеальным материалом для приборов, которые подвергаются воздействию высоких уровней электричества.Химическая инертность вольфрама позволяет использовать его в электродах, являющихся частью электронных микроскопов, без изменения электрических токов. Он также часто используется в лампах и как компонент электронно-лучевых трубок.
Графит 168 Вт / м • K
Графит — это распространенная, недорогая и легкая альтернатива другим углеродным аллотропам. Его часто используют в качестве добавки к смесям полимеров для улучшения их теплопроводных свойств. Батареи — знакомый пример устройства, использующего высокую теплопроводность графита.
Цинк 116 Вт / м • K
Цинк — один из немногих металлов, которые можно легко комбинировать с другими металлами для создания металлических сплавов (смеси двух или более металлов). 20% цинковых приборов в США состоят из цинковых сплавов. При цинковании используется 40% производимого чистого цинка. Цинкование — это процесс нанесения цинкового покрытия на сталь или железо, которое предназначено для защиты металла от атмосферных воздействий и ржавчины.
Список литературы
Мохена, Т.К., Мочане, М. Дж., Сефади, Дж. С., Мотлунг, С. В., и Андала, Д. М. (2018). Теплопроводность полимерных композитов на основе графита. Влияние теплопроводности на энергетические технологии. DOI: 10.5772 / intechopen.75676
Оксид бериллия Получено с https://thermtest.com/materials-database#Beryllium-Oxide
База данных материалов Thermtest. https://thermtest.com/materials-database
Автор: Каллиста Уилсон, младший технический писатель на Thermtest
Тепловые свойства строительных материалов
В предыдущих столбцах технических данных были рассмотрены тепловые свойства многих материалов, которые являются общими для упаковки электроники.Технические данные по этому вопросу шире по объему и касаются обычных строительных материалов, некоторые из которых используются в лабораторных условиях теплопередачи в дополнение к их обычным строительным применениям. Знания о теплопроводности и теплоемкости элементов, используемых для создания или поддержки испытательного набора, часто требуются для понимания и интерпретации результатов (или, по крайней мере, для понимания того, почему для достижения теплового равновесия требовалось так много времени).
В таблице 1 перечислены некоторые строительные материалы и их термические свойства при номинальной комнатной температуре.Металлы и сплавы не были включены, потому что они были рассмотрены ранее. Следует отметить, что эти значения являются приблизительными и репрезентативны для конкретного типа материала. Некоторые материалы поглощают воду, которая, в свою очередь, меняет их свойства. Например, теплопроводность древесины во влажном состоянии может увеличиваться на 15%. Материалы, используемые в качестве изоляторов, которые полагаются на воздух, такие как одеяла из стекловолокна, демонстрируют большее изменение свойств во влажном состоянии. Следует отметить, что диапазон значений теплопроводности для этих материалов довольно скромный (около двух порядков).
Таблица 1. Тепловые свойства конструкционного материала при комнатной температуре [1-4]
|
Рост затрат на электроэнергию и осознание того, что минимизация нежелательной теплопередачи является выгодной, по-прежнему создают стимулы для использования строительных методов и материалов с меньшим энергопотреблением. Преимущества эффективного терморегулирования внутренней электроники также должны сочетаться с термически эффективной конструкцией помещения.Использование изолирующих материалов (с низкой теплопроводностью) может быть желательным, но природа не обеспечила настоящих теплоизоляционных материалов, по крайней мере, по сравнению с диапазоном выбора материалов для электропроводности. Исследование термических свойств этих типов материалов приведет к получению данных со значительными отклонениями из-за различий в составе и различных условий испытаний.
Для многих материалов данные могут быть найдены в виде значения R. Значение R представляет собой обратную величину теплопроводности и имеет единицы измерения ft 2 ��F�h / Btu (иногда данные отображаются в единицах СИ, K�m 2 / Вт и обычно обозначаются как RSI).Более высокое значение R указывает на более ограниченный путь теплового потока. При условии, что указана толщина, можно получить приблизительную теплопроводность. Однако путаница и разногласия по поводу экстраполяции значений R на значение толщины и тот факт, что большинство этих материалов используются в средах с влажностью и движущимся воздухом и подвержены старению, вынудили стандарты в отношении того, как их следует измерять, сообщать и рекламировать [5,6]. Если требуются более чем приблизительные значения, обычно требуется дальнейшее тестирование.
Список литературы
- Incropera, F., De Witt, D., Introduction to Heat Transfer, 2nd Edition, John Wiley and Sons, 1990.
- www.goodfellows.com
- Веб-сайт удобной низкоэнергетической архитектуры (http://www.learn.londonmet.ac.uk/packages/clear/index.html)
- www.coloradoenergy.org/procorner/stuff/r-values.htm
- ASTM C1303, «Стандартный метод испытаний для оценки долгосрочного изменения термического сопротивления необработанных жестких пенопластов с закрытыми порами путем разрезания и масштабирования в лабораторных условиях.”
- Федеральная торговая комиссия «Маркировка и реклама теплоизоляции домов 16CFR460», {www.ftc .gov / bcp / rulemaking / rvalue / 16cfr460.shtm # content # content}
Какие металлы лучше всего проводят тепло? | Metal Supermarkets
Теплопроводность измеряет способность металла проводить тепло. Это свойство различается в зависимости от типа металла, и его важно учитывать в приложениях, где часто встречаются высокие рабочие температуры.
В чистых металлах теплопроводность остается примерно такой же при повышении температуры.Однако в сплавах теплопроводность увеличивается с температурой.
Какие металлы лучше всего проводят тепло?
Обычные металлы, ранжированные по теплопроводности | ||
Рейтинг | Металл | Теплопроводность [БТЕ / (ч · фут⋅ ° F)] |
1 | Медь | 223 |
2 | Алюминий | 118 |
3 | Латунь | 64 |
4 | Сталь | 17 |
5 | бронза | 15 |
Как видите, из наиболее распространенных металлов медь и алюминий обладают самой высокой теплопроводностью, а сталь и бронза — самой низкой.Теплопроводность — очень важное свойство при выборе металла для конкретного применения. Поскольку медь является отличным проводником тепла, она хороша для теплообменников, радиаторов и даже днища кастрюль. Поскольку сталь плохо проводит тепло, она подходит для использования в высокотемпературных средах, таких как двигатели самолетов.
Вот некоторые важные области применения, в которых требуются металлы, хорошо проводящие тепло:
- Теплообменники
- Радиаторы
- Посуда
Теплообменники
Теплообменник — это обычное применение, где важна хорошая теплопроводность.Теплообменники выполняют свою работу, передавая тепло для нагрева или охлаждения.
Медь — популярный выбор для теплообменников в промышленных объектах, систем кондиционирования воздуха, охлаждения, резервуаров для горячей воды и систем теплых полов. Его высокая теплопроводность позволяет теплу быстро проходить через него. Медь имеет дополнительные свойства, желательные для теплообменников, включая устойчивость к коррозии, биологическому обрастанию, нагрузкам и тепловому расширению.
Алюминий также может использоваться в некоторых теплообменниках как более экономичная альтернатива.
Теплообменники обычно используются в следующих ситуациях:
Промышленные объекты
Теплообменники на промышленных объектах включают ископаемые и атомные электростанции, химические предприятия, опреснительные установки и морские службы.
На промышленных предприятиях медно-никелевый сплав используется для изготовления трубок теплообменника. Сплав имеет хорошую коррозионную стойкость, что защищает от коррозии в морской среде. Он также обладает хорошей устойчивостью к биологическому обрастанию, чтобы избежать образования водорослей и морского мха.Алюминиево-латунный сплав имеет аналогичные свойства и может использоваться как альтернатива.
Солнечные системы термального водоснабжения
Солнечные водонагреватели — это экономичный способ нагрева воды, в котором медная трубка используется для передачи солнечной тепловой энергии воде. Медь используется из-за ее высокой теплопроводности, устойчивости к воздушной и водной коррозии и механической прочности.
Газовые водонагреватели
Газо-водяные теплообменники передают тепло, выделяемое газовым топливом, воде.Они распространены в жилых и коммерческих котлах. Для газовых водонагревателей предпочтительным материалом является медь из-за ее высокой теплопроводности и простоты изготовления.
Принудительное воздушное отопление и охлаждение
Тепловые насосы, использующие воздух, давно используются для отопления жилых и коммерческих помещений. Они работают за счет теплообмена воздух-воздух через испарительные агрегаты. Их можно использовать в дровяных печах, котлах и печах. Опять же, медь обычно используется из-за ее высокой теплопроводности.
Радиаторы
Радиаторы — это теплообменник, передающий тепло, выделяемое электронным или механическим устройством, в движущуюся охлаждающую жидкость. Жидкость отводит тепло от устройства, позволяя ему остыть до желаемой температуры. Используются металлы с высокой теплопроводностью.
В компьютерах
радиаторы используются для охлаждения центральных процессоров или графических процессоров. Радиаторы также используются в мощных устройствах, таких как силовые транзисторы, лазеры и светодиоды (светодиоды).
Радиаторы предназначены для увеличения площади поверхности, контактирующей с охлаждающей жидкостью.
Алюминиевые сплавы являются наиболее распространенным материалом для теплоотвода. Это потому, что алюминий стоит меньше меди. Однако медь используется там, где требуется более высокий уровень теплопроводности. В некоторых радиаторах используются комбинированные алюминиевые ребра с медным основанием.
Посуда
Металл с хорошей теплопроводностью чаще используется в быту в посуде. Когда вы разогреваете еду, вы не хотите ждать весь день.Вот почему медь используется для изготовления дна высококачественной посуды, потому что металл быстро проводит тепло и равномерно распределяет его по своей поверхности.
Однако, если у вас ограниченный бюджет, вы можете использовать алюминиевую посуду в качестве альтернативы. Для разогрева еды может потребоваться немного больше времени, но ваш кошелек будет вам благодарен за это!
Metal Supermarkets — крупнейший в мире поставщик мелкосерийного металла с более чем 85 обычными магазинами в США, Канаде и Великобритании.Мы эксперты по металлу и обеспечиваем качественное обслуживание клиентов и продукцию с 1985 года.
В Metal Supermarkets мы поставляем широкий ассортимент металлов для различных областей применения. В нашем ассортименте: нержавеющая сталь, легированная сталь, оцинкованная сталь, инструментальная сталь, алюминий, латунь, бронза и медь.
Наша горячекатаная и холоднокатаная сталь доступна в широком диапазоне форм, включая пруток, трубы, листы и пластины. Мы можем разрезать металл в точном соответствии с вашими требованиями.
Посетите одно из наших 80+ офисов в Северной Америке сегодня.
.