Материал с высокой теплопроводностью: Химики создали материал с рекордной анизотропией теплопроводности

Материал с высокой теплопроводностью: Химики создали материал с рекордной анизотропией теплопроводности

Химики создали материал с рекордной анизотропией теплопроводности

Ученые синтезировали
нанокомпозитное вещество, которое хорошо проводит тепло вдоль внутренних слоев,
но близко по свойствам к теплоизолятору в перпендикулярном направлении.
Отношение теплопроводностей в разных направлениях для данной структуры
оказалось рекордным и достигает значения в 38, пишут авторы в журнале Angewandte
Chemie
.

Управление потоками тепла
исключительно важно в самых
разнообразных ситуациях, начиная от работы микроэлектроники, до поддержания
комфортной температуры внутри дома. Чтобы отвести тепло используются вещества с
высокой теплопроводностью, например, металлы. Для предотвращения нежелательного
изменения температуры применяются теплоизоляторы — как правило, многофазные
материалы, такие как пенопласт или поролон, представляющие собой заполненную
воздухом мелкую пену.

Несмотря на то, что теплопроводящие
свойства материалов обычно важны на сравнительно больших расстояниях, они
определяются структурой веществ и их химией на микроуровне. Ученые уже обнаружили
ряд экстремальных проявлений этой зависимости. В частности, одномерные полимерные
нити демонстрируют удивительно высокую теплопроводность, в то время как
неупорядоченные слоистые материалы, наоборот, проводят тепло очень плохо.

Химики из Германии и
Греции синтезировали новое вещество, которое представляет собой одномерные полимерные
цепи поливинилпирролидона, зажатые между слоями синтетического флюорогекторита
(Hec) — глинистого неорганического минерала. Получившаяся структура похожа по
строению на природный органико-неорганический композит — перламутр. При этом
вещество прозрачно, а также оказалось электрическим изолятором.

Ключевой особенностью материала
является его упорядоченность, которая позволяет создавать однородные пластины,
между которыми находятся не переплетающиеся полимерные нити. Такая система
подходит для детального исследования не только необычной теплопроводности, но и
ее связи с механическими свойствами вещества на микроскопическом масштабе,
которые измерять сложнее.

Получить столь однородный
материал позволило редкое свойство Hec под названием осмотическое набухание, то
есть отщепление слоев при определенных химических воздействиях. В случае Hec простое
погружение вещества в деионизованную воду приводило к разделению на отдельные чешуйки минимально возможной толщины 10 ангстрем и средним диаметром в 20 микрон.
Полученную взвесь смешивали с раствором полимера и высушивали, получая в
результате материал из сотен сложенных в стопку слоев.

Измерения свойств вещества
показало рекордное значение анизотропии теплопроводности: вдоль слоев тепло
распространялось до 38 раз лучше, чем поперек них. При этом большее значение (5,7
ватт на метр на кельвин) примерно соответствует показателям термопаст, которые
используют для отвода тепловой энергии от различных микроэлектронных устройств,
в том числе компьютерных процессоров. Для электрических изоляторов схожего
строения это также оказалось рекордом.

Ученые использовали ряд методов,
таких как бриллюэновская спектроскопия, для определения механических свойств
вещества и их зависимости от направления. Оказалось, что такие механические
характеристики, как модули сдвига и Юнга, коррелируют с теплопроводностью на
микроуровне — они оказались значительно анизотропными. Подобное также
устанавливается впервые, по словам авторов работы.

Ранее ученые вывели единую теорию для описания теплопроводности кристаллов и стекол, увидели в эксперименте квантование теплопроводности в топологических материалах, а также создали изотропный теплопроводящий пластик.

Тимур Кешелава

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Статьи на Строительном портале Украины

Что такое коэффициент плотности и теплопроводности строительных материалов?

Чтобы не занимать лишним  ваши головы, попробуем ответить на этот вопрос как можно проще и понятнее.

Для обозначения коэффициента теплопроводности при расчетах используется символ λ, а измеряется данная величина в ВТ/м*К.
Как известно, тепло передается при контакте двух материалов от одного к другому или через материал. Наиболее высокой теплопроводностью отличаются самые плотные материалы, к примеру, такие как стекло, металл, камень. Воздух и газы имеют низкую теплопроводность, поэтому пористые материалы, такие как пенополистирол, пенобетон или  пенопласт так же отличаются  более низкой теплопроводностью. В этом Вы убедитесь, ознакомившись с приведенной ниже таблицей.

Кроме того, следует учитывать, что теплопроводность материала напрямую зависит от его плотности, добавок и влажности. Так, одни и те же строительные материалы от разных производителей будут иметь различные физические свойства. Поэтому, чтобы быть уверенным в правильности расчетов на все сто,  лучше значения коэффициентов теплопроводности материала взять из документации производителя.

Материал Плотность (для сыпучих – насыпная плотность), кг/м3 Коэффициент теплопроводности, Вт/ (м*К)
Алюминий 2600-2700 203,5-221 растет с ростом плотности
Асбест 600 0,151
Асфальтобетон 2100 1,05
АЦП асбесто-цементные плиты 1800 0,35
Бетон 2300-2400 1,28-1,51 растет с ростом плотности
Битум 1400 0,27
Бронза 8000 64
Винипласт 1380 0,163
Вода при температурах выше 0 градусов С 1000 0,6
Войлок шерстяной 300 0,047
Гипсокартон 800 0,15
Гранит 2800 3,49
Дерево, дуб — вдоль волокон 700 0,23
Дерево, дуб — поперек волокон 700 0,1
Дерево, сосна или ель — вдоль волокон 500 0,18
Дерево, сосна или ель — поперек волокон 500 0,10—0,15 растет с ростом плотности и влажности
ДСП, ОСП; древесно- или ориентированно-стружечная плита 1000 0,15
Железобетон 2500 1,69
Картон облицовочный 1000 0,18
Керамзит 200 0,1
Керамзит 800 0,18
Керамзитобетон 1800 0,66
Керамзитобетон 500 0,14
Кирпич керамический пустотелый (брутто1000) 1200 0,35
Кирпич керамический пустотелый (брутто1400) 1600 0,41
Кирпич красный глиняный 1800 0,56
Кирпич, силикатный 1800 0,7
Кладка из изоляционного кирпича 600 0,116—0,209 растет с ростом плотности
Кладка из обыкновенного кирпича 600-1700 0,384—0,698—0,814 растет с ростом плотности
Кладка из огнеупорного кирпича 1840 1,05 (при 800—1100°С)
Краска масляная 0,233
Латунь 8500 93
Лед при температурах ниже 0 градусов С 920 2,33
Линолеум 1600 0,33
Литье каменное 3000 0,698
Магнезия 85% в порошке 216 0,07
Медь 8500-8800 384-407 растет с ростом плотности
Минвата 100 0,056
Минвата 50 0,048
Минвата 200 0,07
Мрамор 2800 2,91
Опилки древесные 230 0,070—0,093 растет с ростом плотности и влажности
Пакля сухая 150 0,05
Пенобетон 1000 0,29
Пенобетон 300 0,08
Пенопласт 30 0,047
Пенопласт ПВХ 125 0,052
Пенополистирол 100 0,041
Пенополистирол 150 0,05
Пенополистирол 40 0,038
Пенополистирол экструдированый 33 0,031
Пенополиуретан 32 0,023
Пенополиуретан 40 0,029
Пенополиуретан 60 0,035
Пенополиуретан 80 0,041
Пеностекло 400 0,11
Пеностекло 2000 0,07
Песок сухой 1600 0,35
Песок влажный 1900 0,814
Полимочевина 1100 0,21
Полиуретановая мастика 1400 0,25
Полиэтилен 1500 0,3
Пробковая мелочь 160 0,047
Рубероид, пергамин 600 0,17
Свинец 11400 34,9
Совелит 450 0,098
Сталь 7850 58
Сталь нержавеющая 7900 17,5
Стекло оконное 2500 0,698—0,814
Стеклянная вата (стекловата) 200 0,035—0,070 растет с ростом плотности
Текстолит 1380 0,244
Торфоплиты 220 0,064
Фанера клееная 600 0,12
Фаолит 1730 0,419
Чугун 7500 46,5—93,0
Шлаковая вата 250 0,076
Эмаль 2350 0,872—1,163

 

Рубрика: 

Стройматериалы


Вернуться назад

Маловероятный конкурент алмазу как лучшему проводнику тепла Письма о физическом обзоре

.

Открытие того, что химическое соединение бора и мышьяка может соперничать с алмазом, самым известным проводником тепла, удивило группу физиков-теоретиков из Бостонского колледжа и Военно-морской исследовательской лаборатории. Но новый теоретический подход позволил команде раскрыть секрет потенциально экстраординарной способности арсенида бора проводить тепло.

Меньшие, более быстрые и мощные микроэлектронные устройства создают сложную задачу по отводу выделяемого ими тепла. Хорошие теплопроводники, соприкасающиеся с такими устройствами, быстро отводят тепло от нежелательных «горячих точек», что снижает эффективность этих устройств и может привести к их выходу из строя.

Алмаз — самый ценный из драгоценных камней. Но, помимо своего блеска и ювелирной красоты, он обладает многими другими замечательными свойствами. Наряду со своими углеродными родственниками графитом и графеном алмаз является лучшим проводником тепла при комнатной температуре, имея теплопроводность более 2000 ватт на метр на кельвин, что в пять раз выше, чем у лучших металлов, таких как медь. В настоящее время алмаз широко используется для отвода тепла от компьютерных чипов и других электронных устройств. К сожалению, алмазы редки и дороги, а производство высококачественных синтетических алмазов сложно и дорого. Это подтолкнуло к поиску новых материалов со сверхвысокой теплопроводностью, но в последние годы достигнут незначительный прогресс.

По словам соавтора Дэвида Бройдо, профессора физики Бостонского колледжа, хорошо изучена высокая теплопроводность алмаза, обусловленная легкостью составляющих его атомов углерода и жесткими химическими связями между ними. С другой стороны, не ожидалось, что арсенид бора будет особенно хорошим проводником тепла, и фактически было оценено — с использованием обычных критериев оценки — его теплопроводность в 10 раз меньше, чем у алмаза.

Команда обнаружила, что расчетная теплопроводность кубического арсенида бора чрезвычайно высока: более 2000 Вт на метр на кельвин при комнатной температуре и выше, чем у алмаза при более высоких температурах, по словам Бройдо и соавторов Тома Райнеке, старшего научного сотрудника в Лаборатория военно-морских исследований и Лукас Линдсей, научный сотрудник NRL, получивший докторскую степень в Британской Колумбии.

Бройдо сказал, что команда использовала недавно разработанный теоретический подход для расчета теплопроводности, который они ранее протестировали со многими другими хорошо изученными материалами. Уверенные в своем теоретическом подходе, команда более внимательно изучила арсенид бора, теплопроводность которого никогда не измерялась.

В отличие от металлов, где электроны переносят тепло, алмаз и арсенид бора являются электрическими изоляторами. Для них тепло переносится колебательными волнами составляющих атомов, и столкновение этих волн друг с другом создает внутреннее сопротивление тепловому потоку. Команда была удивлена, обнаружив необычное взаимодействие определенных колебательных свойств в арсениде бора, которое выходит за рамки рекомендаций, обычно используемых для оценки теплопроводности электрических изоляторов. Оказывается, ожидаемые столкновения между колебательными волнами гораздо менее вероятны в определенном диапазоне частот. Таким образом, на этих частотах арсенид бора может проводить большое количество тепла.

«Эта работа дает новый важный взгляд на физику переноса тепла в материалах и иллюстрирует мощь современных вычислительных методов в количественном прогнозировании материалов, теплопроводность которых еще предстоит измерить», — сказал Бройдо. «Мы рады видеть, что наше неожиданное открытие для арсенида бора может быть подтверждено измерениями. Если это так, это может открыть новые возможности для приложений пассивного охлаждения с использованием арсенида бора, и это еще раз продемонстрирует важную роль, которую такая теоретическая работа может играть в предоставление полезного руководства для определения новых материалов с высокой теплопроводностью».

Предоставлено
Бостонский колледж

Цитата :
Маловероятный конкурент алмазу как лучшему теплопроводнику (8 июля 2013 г.)
получено 30 ноября 2022 г.
с https://phys.org/news/2013-07-competitor-diamond-thermal-conductor.html

Этот документ защищен авторским правом. Помимо любой добросовестной сделки с целью частного изучения или исследования, никакие
часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в ознакомительных целях.

Какие керамические материалы обладают высокой теплопроводностью?

Теплопроводность керамических материалов играет важную роль в их применении. В определенном диапазоне повышение теплопроводности керамических материалов определенными методами улучшит их способность к теплопроводности, конвекции тепла и тепловому излучению, что еще больше расширит область их применения. Керамические материалы с высокой теплопроводностью в основном состоят из оксидов, нитридов, карбидов и боридов, таких как поликристаллическая алмазная керамика, нитрид алюминия, оксид бериллия, нитрид кремния и карбид кремния.

Поликристаллический алмаз (PCD)

Алмаз обладает высокой теплопроводностью. Теоретическое значение теплопроводности его монокристалла составляет 1642 Вт/м•К при комнатной температуре, а измеренное значение — 2000 Вт/м•К. Однако крупный монокристалл алмаза сложен в приготовлении и дорог. В процессе спекания поликристаллического алмаза часто добавляют вспомогательные вещества для спекания, чтобы усилить связь между алмазными порошками, чтобы получить керамику PCD с высокой теплопроводностью. Однако помощник по спеканию может катализировать карбонизацию алмазного порошка в процессе высокотемпературного спекания, так что поликристаллический алмаз больше не изолирован. Небольшой монокристалл алмаза часто добавляют в теплопроводную керамику в качестве армирующего материала для улучшения теплопроводности керамики.

Поликристаллическая алмазная керамика является конструкционным и новым функциональным материалом. В настоящее время поликристаллическая алмазная керамика нашла широкое применение в областях современной промышленности, национальной обороны, высоких и новых технологий благодаря своим превосходным механическим, термическим, химическим, акустическим, оптическим и электрическим свойствам.

Карбид кремния

В настоящее время карбид кремния (SiC) является активным теплопроводным керамическим материалом в стране и за рубежом. Теоретическая теплопроводность карбида кремния очень высока и достигает 270 Вт/м•К. Однако, поскольку отношение поверхностной энергии к межфазной энергии керамических материалов SiC низкое, то есть энергия границ зерен высока, трудно производить высокочистую и плотную керамику SiC обычными методами спекания. Вспомогательные вещества для спекания должны быть добавлены при использовании обычных методов спекания, а температура спекания должна быть выше 2050 ℃. Однако такие условия спекания вызывают рост зерен SiC и значительно снижают механические свойства керамики SiC.

Керамика из карбида кремния широко используется в высокотемпературных подшипниках, пуленепробиваемых пластинах, соплах, деталях, устойчивых к высокотемпературной коррозии, а также в высокотемпературном и высокочастотном диапазоне деталей электронного оборудования и других областях.

Нитрид кремния

Керамика из нитрида кремния (Si3N4) привлекает все больше и больше внимания отечественных и зарубежных исследователей из-за ее превосходных свойств, таких как высокая ударная вязкость, высокая термостойкость, хорошая изоляция, коррозионная стойкость и нетоксичность. Прочность связи, средняя атомная масса и ангармонические колебания керамики из нитрида кремния аналогичны таковым у SiC. Теоретическая теплопроводность кристаллов нитрида кремния составляет 200 ~ 320 Вт/м•К. Однако, поскольку структура Si3N4 более сложна, чем структура нитрида алюминия (AlN), а рассеяние фононов больше, теплопроводность спеченной керамики Si3N4 в настоящем исследовании намного ниже, чем у монокристалла Si3N4, что также ограничивает его масштабное продвижение и применение.

Оксид бериллия

Оксид бериллия (ВеО) относится к гексагональной структуре вюрцита, с малым расстоянием между атомами Ве и О, малой средней атомной массой и плотным скоплением атомов, что соответствует условиям модели Слака с

высокая теплопроводность монокристалла. В 1971 году Слэк и Ауатерман проверили теплопроводность керамики BeO и крупного монокристалла BeO и подсчитали, что теплопроводность крупного монокристалла BeO может достигать 370 Вт/м•К. В настоящее время теплопроводность полученной керамики BeO может достигать 280 Вт/м•К, что в 10 раз выше, чем у керамики из оксида алюминия (Al2O3).

Оксид бериллия широко используется в аэрокосмической, ядерной энергетике, металлургии, электронной промышленности, ракетостроении и так далее. ВеО широко используется в качестве несущих деталей и узлов в схемах преобразования авионики, в авиационных и спутниковых системах связи; Керамика BeO обладает особенно высокой стойкостью к тепловому удару и может использоваться в дымоходах реактивных самолетов; пластина BeO с металлическим покрытием использована в системе управления приводом самолета; Ford и General Motors используют накладки из оксида бериллия с металлическим напылением в системах зажигания автомобилей; BeO обладают хорошей теплопроводностью и легко миниатюризируются, поэтому имеют широкие перспективы применения в лазерной области. Например, BeO-лазер имеет более высокую эффективность и большую выходную мощность, чем кварцевый лазер.

Нитрид алюминия (AlN)

Керамика из нитрида алюминия является наиболее широко используемым материалом с высокой теплопроводностью. Теоретическая теплопроводность монокристалла нитрида алюминия может достигать 3200 Вт/м•К. Однако из-за неизбежных примесей и дефектов в процессе спекания эти примеси создают различные дефекты в решетке AlN, которые уменьшают среднюю свободу фононов и, таким образом, сильно снижают их теплопроводность. В дополнение к влиянию дефектов решетки AlN на теплопроводность, размер зерна, морфология, а также содержание и распределение второй фазы на границах зерен также имеют важное влияние на теплопроводность керамики AlN. Чем больше размер зерна, тем больше средняя свобода фононов и тем выше теплопроводность спеченной керамики AlN.

Как типичный ковалентный комплекс, нитрид алюминия имеет высокую температуру плавления, низкий коэффициент атомной самодиффузии и высокую энергию границ зерен во время спекания. Поэтому трудно производить керамику AlN высокой чистоты обычными методами спекания. Кроме того, добавление соответствующих противоожоговых добавок может также реагировать с кислородом в решетке с образованием второй фазы, очищать решетку AlN и улучшать теплопроводность.

Previous PostNextNext Post

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *